Frontiers of Electrical and Electronic Engineering >
Observations on potential novel transcripts from RNA-Seq data
Received date: 23 Mar 2011
Accepted date: 12 Apr 2011
Published date: 05 Jun 2011
Copyright
With the rapid development of next generation deep sequencing technologies, sequencing cDNA reverse-transcribed from RNA molecules (RNA-Seq) has become a key approach in studying gene expression and transcriptomes. Because RNA-Seq does not rely on annotation of known genes, it provides the opportunity of discovering transcripts that have not been annotated in current databases. Studying the distribution of RNA-Seq signals and a systematic view on the potential new transcripts revealed from the signals is an important step toward the understanding of transcriptomes.
Key words: RNA-Seq; novel transcripts; next generation sequencing; bioinformatics
Chao YE , Linxi LIU , Xi WANG , Xuegong ZHANG . Observations on potential novel transcripts from RNA-Seq data[J]. Frontiers of Electrical and Electronic Engineering, 2011 , 6(2) : 275 -282 . DOI: 10.1007/s11460-011-0148-9
1 |
Mercer T R, Dinger M E, Mattick J S. Long non-coding RNAs: insights into functions. Nature Reviews Genetics, 2009, 10(3): 155-159
|
2 |
van Bakel H, Hughes T R. Establishing legitimacy and function in the new transcriptome. Briefings in Functional Genomics & Proteomics, 2009, 8(6): 424-436
|
3 |
Schena M, Shalon D, Davis R W, Brown P O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235): 467-470
|
4 |
Shendure J, Ji H. Next-generation DNA sequencing. Nature Biotechnology, 2008, 26(10): 1135-1145
|
5 |
Metzker M L. Sequencing technologies — the next generation. Nature Reviews Genetics, 2010, 11(1): 31-46
|
6 |
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009, 10(1): 57-63
|
7 |
Cock P J, Fields C J, Goto N, Heier M L, Rice P M. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research, 2010, 38(6): 1767-1771
|
8 |
Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628
|
9 |
Marioni J C, Mason C E, Mane S M, Stephens M, Gilad Y. RNA-Seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 2008, 18(9): 1509-1517
|
10 |
Friedlaender M R, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N. Discovering micro-RNAs from deep sequencing data using miRDeep. Nature Biotechnology, 2008, 26(4): 407-415
|
11 |
Pan Q, Shai O, Lee L J, Frey B J, Blencowe B J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genetics, 2008, 40(12): 1413-1415
|
12 |
Wang E T, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore S F, Schroth G P, Burge C B. Alternative isoform regulation in human tissue transcriptomes. Nature, 2008, 456(7221): 470-476
|
13 |
Jiang H,Wong WH. Statistical inferences for Isoform expression in RNA-Seq. Bioinformatics, 2009, 25(8): 1026-1032
|
14 |
Homer N, Merriman B, Nelson S F. BFAST: an alignment tool for large scale genome resequencing. PLoS One, 2009, 4(11): e7767
|
15 |
Langmead B, Trapnel C, Pop M, Salzberg S L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009, 10(3): R25
|
16 |
Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research, 2008, 18(11): 1851-1858
|
17 |
Trapnell C, Pachter L, Salzberg S L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 2009, 25(9): 1105-1111
|
18 |
Au K F, Jiang H, Lin L, Xing Y, Wong W H. Detection of splice junctions from paired-end RNA-Seq data by SpliceMap. Nucleic Acids Research, 2010, 38(14): 4570-4578
|
19 |
Wang K, Singh D, Zeng Z, Coleman S J, Huang Y, Savich G L, He X, Mieczkowski P, Grimm S A, Perou C M, MacLeod J N, Chiang D Y, Prins J F, Liu J. MapSplice: accurate mapping of RNA-Seq reads for splice junction discovery. Nucleic Acids Research, 2010, 38(18): e178
|
20 |
Trapnell C, Salzberg S L. How to map billions of short reads onto genomes. Nature Biotechnology, 2009, 27(5): 455-457
|
21 |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/MAP format and SAMtools. Bioinformatics, 2009, 25(16): 2078-2079
|
22 |
Pruitt K D, Tatusova T, Maglott D R. NCBI reference sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 2005, 33(suppl 1): D501-D504
|
23 |
Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E, Pettett R, Pocock M, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A, Vastrik I, Clamp M. The Ensemble genome database project. Nucleic Acids Research, 2002, 30(1): 38-41
|
24 |
Harrow J, Denoeud F, Frankish A, Reymond A, Chen C K, Chrast J, Lagarde J, Gilbert J G R, Storey R, Swarbreck D, Rossier C, Ucla C, Hubbard T, Antonarakis S E, Guigo R. GENCODE: producing a reference annotation for ENCODE. Genome Biology, 2006, 7(Suppl 1): S4.1-S4.9
|
25 |
Wang L K, Feng Z X, Wang X, Wang X W, Zhang X G. DEGseq: an R package for identifying differentially expressed genes from RNA-Seq data. Bioinformatics, 2010, 26 (1): 136-138
|
26 |
Kent W J, Sugnet C W, Furey T S, Roskin K M, Pringle T H, Zahler A M, Haussler D. The human genome browser at UCSC. Genome Research, 2002, 12(6): 996-1006
|
27 |
Robinson J T, Thorvaldsdóttir H, Winckler W, Guttman M, Lander E S, Getz G, Mesirov J P. Integrative genomics viewer. Nature Biotechnology, 2011, 29(1): 24-26
|
28 |
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 1995, 57(1): 289-300
|
/
〈 | 〉 |