Observations on potential novel transcripts from RNA-Seq data

Chao YE, Linxi LIU, Xi WANG, Xuegong ZHANG

PDF(427 KB)
PDF(427 KB)
Front. Electr. Electron. Eng. ›› 2011, Vol. 6 ›› Issue (2) : 275-282. DOI: 10.1007/s11460-011-0148-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Observations on potential novel transcripts from RNA-Seq data

Author information +
History +

Abstract

With the rapid development of next generation deep sequencing technologies, sequencing cDNA reverse-transcribed from RNA molecules (RNA-Seq) has become a key approach in studying gene expression and transcriptomes. Because RNA-Seq does not rely on annotation of known genes, it provides the opportunity of discovering transcripts that have not been annotated in current databases. Studying the distribution of RNA-Seq signals and a systematic view on the potential new transcripts revealed from the signals is an important step toward the understanding of transcriptomes.

Keywords

RNA-Seq / novel transcripts / next generation sequencing / bioinformatics

Cite this article

Download citation ▾
Chao YE, Linxi LIU, Xi WANG, Xuegong ZHANG. Observations on potential novel transcripts from RNA-Seq data. Front Elect Electr Eng Chin, 2011, 6(2): 275‒282 https://doi.org/10.1007/s11460-011-0148-9

References

[1]
Mercer T R, Dinger M E, Mattick J S. Long non-coding RNAs: insights into functions. Nature Reviews Genetics, 2009, 10(3): 155-159
CrossRef Google scholar
[2]
van Bakel H, Hughes T R. Establishing legitimacy and function in the new transcriptome. Briefings in Functional Genomics & Proteomics, 2009, 8(6): 424-436
CrossRef Google scholar
[3]
Schena M, Shalon D, Davis R W, Brown P O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235): 467-470
CrossRef Google scholar
[4]
Shendure J, Ji H. Next-generation DNA sequencing. Nature Biotechnology, 2008, 26(10): 1135-1145
CrossRef Google scholar
[5]
Metzker M L. Sequencing technologies — the next generation. Nature Reviews Genetics, 2010, 11(1): 31-46
CrossRef Google scholar
[6]
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009, 10(1): 57-63
CrossRef Google scholar
[7]
Cock P J, Fields C J, Goto N, Heier M L, Rice P M. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research, 2010, 38(6): 1767-1771
CrossRef Google scholar
[8]
Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628
CrossRef Google scholar
[9]
Marioni J C, Mason C E, Mane S M, Stephens M, Gilad Y. RNA-Seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 2008, 18(9): 1509-1517
CrossRef Google scholar
[10]
Friedlaender M R, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N. Discovering micro-RNAs from deep sequencing data using miRDeep. Nature Biotechnology, 2008, 26(4): 407-415
CrossRef Google scholar
[11]
Pan Q, Shai O, Lee L J, Frey B J, Blencowe B J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genetics, 2008, 40(12): 1413-1415
CrossRef Google scholar
[12]
Wang E T, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore S F, Schroth G P, Burge C B. Alternative isoform regulation in human tissue transcriptomes. Nature, 2008, 456(7221): 470-476
CrossRef Google scholar
[13]
Jiang H,Wong WH. Statistical inferences for Isoform expression in RNA-Seq. Bioinformatics, 2009, 25(8): 1026-1032
CrossRef Google scholar
[14]
Homer N, Merriman B, Nelson S F. BFAST: an alignment tool for large scale genome resequencing. PLoS One, 2009, 4(11): e7767
CrossRef Google scholar
[15]
Langmead B, Trapnel C, Pop M, Salzberg S L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009, 10(3): R25
CrossRef Google scholar
[16]
Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research, 2008, 18(11): 1851-1858
CrossRef Google scholar
[17]
Trapnell C, Pachter L, Salzberg S L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 2009, 25(9): 1105-1111
CrossRef Google scholar
[18]
Au K F, Jiang H, Lin L, Xing Y, Wong W H. Detection of splice junctions from paired-end RNA-Seq data by SpliceMap. Nucleic Acids Research, 2010, 38(14): 4570-4578
CrossRef Google scholar
[19]
Wang K, Singh D, Zeng Z, Coleman S J, Huang Y, Savich G L, He X, Mieczkowski P, Grimm S A, Perou C M, MacLeod J N, Chiang D Y, Prins J F, Liu J. MapSplice: accurate mapping of RNA-Seq reads for splice junction discovery. Nucleic Acids Research, 2010, 38(18): e178
CrossRef Google scholar
[20]
Trapnell C, Salzberg S L. How to map billions of short reads onto genomes. Nature Biotechnology, 2009, 27(5): 455-457
CrossRef Google scholar
[21]
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/MAP format and SAMtools. Bioinformatics, 2009, 25(16): 2078-2079
CrossRef Google scholar
[22]
Pruitt K D, Tatusova T, Maglott D R. NCBI reference sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 2005, 33(suppl 1): D501-D504
CrossRef Google scholar
[23]
Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E, Pettett R, Pocock M, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A, Vastrik I, Clamp M. The Ensemble genome database project. Nucleic Acids Research, 2002, 30(1): 38-41
CrossRef Google scholar
[24]
Harrow J, Denoeud F, Frankish A, Reymond A, Chen C K, Chrast J, Lagarde J, Gilbert J G R, Storey R, Swarbreck D, Rossier C, Ucla C, Hubbard T, Antonarakis S E, Guigo R. GENCODE: producing a reference annotation for ENCODE. Genome Biology, 2006, 7(Suppl 1): S4.1-S4.9
[25]
Wang L K, Feng Z X, Wang X, Wang X W, Zhang X G. DEGseq: an R package for identifying differentially expressed genes from RNA-Seq data. Bioinformatics, 2010, 26 (1): 136-138
CrossRef Google scholar
[26]
Kent W J, Sugnet C W, Furey T S, Roskin K M, Pringle T H, Zahler A M, Haussler D. The human genome browser at UCSC. Genome Research, 2002, 12(6): 996-1006
[27]
Robinson J T, Thorvaldsdóttir H, Winckler W, Guttman M, Lander E S, Getz G, Mesirov J P. Integrative genomics viewer. Nature Biotechnology, 2011, 29(1): 24-26
CrossRef Google scholar
[28]
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 1995, 57(1): 289-300

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(427 KB)

Accesses

Citations

Detail

Sections
Recommended

/