Information geometry in neural spike sequences

Kazushi IKEDA , Daisuke KOMAZAWA , Hiroyuki FUNAYA

Front. Electr. Electron. Eng. ›› 2011, Vol. 6 ›› Issue (1) : 146 -150.

PDF (194KB)
Front. Electr. Electron. Eng. ›› 2011, Vol. 6 ›› Issue (1) : 146 -150. DOI: 10.1007/s11460-010-0123-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Information geometry in neural spike sequences

Author information +
History +
PDF (194KB)

Abstract

An information geometrical method is developed for characterizing or classifying neurons in cortical areas whose spike rates fluctuate in time. The interspike intervals (ISIs) of a spike sequence of a neuron is modeled as a gamma process with a time-variant spike rate, a fixed shape parameter and a fixed absolute refractory period. We formulate the problem of estimating the fixed parameters as semiparametric estimation and apply an information geometrical method to derive the optimal estimators from a statistical viewpoint.

Keywords

information geometry / neural spikes / semiparametric estimation / interspike intervals (ISIs)

Cite this article

Download citation ▾
Kazushi IKEDA, Daisuke KOMAZAWA, Hiroyuki FUNAYA. Information geometry in neural spike sequences. Front. Electr. Electron. Eng., 2011, 6(1): 146-150 DOI:10.1007/s11460-010-0123-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Holt G R, Softky W R, Koch C, Douglas R J. Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. Journal of Neurophysiology, 1996, 75(5): 1806-1814

[2]

Shinomoto S, Sakai Y, Funahashi S. The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Computation, 1999, 11(4): 935-951

[3]

Sakai Y, Funahashi S, Shinomoto S. Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons. Neural Networks, 1999, 12(7-8): 1181-1190

[4]

Shinomoto S, Shima K, Tanji J. New classification scheme of cortical sites with the neuronal spiking characteristics. Neural Networks, 2002, 15(10): 1165-1169

[5]

Shinomoto S, Shima K, Tanji J. Differences in spiking patterns among cortical neurons. Neural Computation, 2003, 15(12): 2823-2842

[6]

Shinomoto S, Kim H, Shimokawa T, Matsuno N, Funahashi S, Shima K, Fujita I, Tamura H, Doi T, Kawano K, Inaba N, Fukushima K, Kurkin S, Kurata K, Taira M, Tsutsui K, Komatsu H, Ogawa T, Koida K, Tanji J, Toyama K. Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Computational Biology, 2009, 5(7): e1000433

[7]

Tiesinga P H E, Fellous J M, Sejnowski T J. Attractor reliability reveals deterministic structure in neuronal spike trains. Neural Computation, 2002, 14(7): 1629-1650

[8]

Amari S. Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics. Berlin: Springer-Verlag, 1985

[9]

Amari S, Nagaoka H. Methods of Information Geometry. New York: Oxford University Press, 2000

[10]

Miura K, Shinomoto S, Okada M. Search for optimal measure to discriminate random and regular spike trains. IEICE Technical Report, 2004, NC2004-52

[11]

Ikeda K. Information geometry of interspike intervals in spiking neurons. Neural Computation, 2005, 17(12): 2719-2735

[12]

Miura K, Okada M, Amari S. Estimating spiking irregularities under changing environments. Neural Computation, 2006, 18(10): 2359-2386

[13]

Shinomoto S, Tsubo Y. Modeling spiking behavior of neurons with time-dependent Poisson processes. Physical Review E, 2001, 64(4): 041910

[14]

Godambe V P. Conditional likelihood and unconditional optimum estimating equations. Biometrika, 1976, 63(2): 277-284

[15]

Godambe V P. Estimating Functions. Oxford: Oxford University Press, 1991

[16]

Amari S, Kawanabe M. Information geometry of estimating functions in semiparametric statistical models. Bernoulli, 1997, 3(1): 29-54

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (194KB)

679

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/