Collections AI Mindmap AI Analyzer

Bioinformatics (CCF CBC2022 Award Papers)
Publication years
Loading ...
Article types
Loading ...
  • Select all
  • RESEARCH ARTICLE
    Pijing WEI, Qianqian WANG, Zhen GAO, Ruifen CAO, Chunhou ZHENG
    Frontiers of Computer Science, 2024, 18(6): 186912. https://doi.org/10.1007/s11704-023-3610-y

    MicroRNAs (miRNAs) are closely related to numerous complex human diseases, therefore, exploring miRNA-disease associations (MDAs) can help people gain a better understanding of complex disease mechanism. An increasing number of computational methods have been developed to predict MDAs. However, the sparsity of the MDAs may hinder the performance of many methods. In addition, many methods fail to capture the nonlinear relationships of miRNA-disease network and inadequately leverage the features of network and neighbor nodes. In this study, we propose a deep matrix factorization model with variational autoencoder (DMFVAE) to predict potential MDAs. DMFVAE first decomposes the original association matrix and the enhanced association matrix, in which the enhanced association matrix is enhanced by self-adjusting the nearest neighbor method, to obtain sparse vectors and dense vectors, respectively. Then, the variational encoder is employed to obtain the nonlinear latent vectors of miRNA and disease for the sparse vectors, and meanwhile, node2vec is used to obtain the network structure embedding vectors of miRNA and disease for the dense vectors. Finally, sample features are acquired by combining the latent vectors and network structure embedding vectors, and the final prediction is implemented by convolutional neural network with channel attention. To evaluate the performance of DMFVAE, we conduct five-fold cross validation on the HMDD v2.0 and HMDD v3.2 datasets and the results show that DMFVAE performs well. Furthermore, case studies on lung neoplasms, colon neoplasms, and esophageal neoplasms confirm the ability of DMFVAE in identifying potential miRNAs for human diseases.

  • RESEARCH ARTICLE
    Xiaosong HAN, Mengchen CAO, Dong XU, Xiaoyue FENG, Yanchun LIANG, Xiaoduo LANG, Renchu GUAN
    Frontiers of Computer Science, 2024, 18(6): 186911. https://doi.org/10.1007/s11704-024-3612-4

    Prenatal depression, which can affect pregnant women’s physical and psychological health and cause postpartum depression, is increasing dramatically. Therefore, it is essential to detect prenatal depression early and conduct an attribution analysis. Many studies have used questionnaires to screen for prenatal depression, but the existing methods lack attributability. To diagnose the early signs of prenatal depression and identify the key factors that may lead to prenatal depression from questionnaires, we present the semantically enhanced option embedding (SEOE) model to represent questionnaire options. It can quantitatively determine the relationship and patterns between options and depression. SEOE first quantifies options and resorts them, gathering options with little difference, since Word2Vec is highly dependent on context. The resort task is transformed into an optimization problem involving the traveling salesman problem. Moreover, all questionnaire samples are used to train the options’ vector using Word2Vec. Finally, an LSTM and GRU fused model incorporating the cycle learning rate is constructed to detect whether a pregnant woman is suffering from depression. To verify the model, we compare it with other deep learning and traditional machine learning methods. The experiment results show that our proposed model can accurately identify pregnant women with depression and reach an F1 score of 0.8. The most relevant factors of depression found by SEOE are also verified in the literature. In addition, our model is of low computational complexity and strong generalization, which can be widely applied to other questionnaire analyses of psychiatric disorders.