Self-consistent field theory and its applications in polymer systems

Dadong YAN, Tongchuan SUO, Xinghua ZHANG, Xingkun MAN, Bing MIAO

Front. Chem. China ›› 2011, Vol. 6 ›› Issue (4) : 310-331.

PDF(751 KB)
PDF(751 KB)
Front. Chem. China ›› 2011, Vol. 6 ›› Issue (4) : 310-331. DOI: 10.1007/s11458-011-0251-8
REVIEW ARTICLE
REVIEW ARTICLE

Self-consistent field theory and its applications in polymer systems

Author information +
History +

Abstract

This review article addresses the widely used self-consistent field theory (SCFT) in interacting polymer systems. The theoretical framework and numerical method of solving the self-consistent equations are presented. In this paper, different structures of polymer can be considered, such as homopolymer, block copolymer, polydisperse polymer and charged polymer. Several systems, micro/macro phase separation, interface, self-assembly, are presented as examples to demonstrate its applications in details. Besides, the fluctuation effects are considered. The first order is Gaussian fluctuation theory, which can be used to determine the stability of the mean-field solution and predict the kinetics of unstable structure. The derivation and applications of Gaussian fluctuation theory are presented as well.

Keywords

self-consistent field theory (SCFT) / Gaussian fluctuation theory / self-assembly / adsorption / depletion / polyelectrolyte / confinement

Cite this article

Download citation ▾
Dadong YAN, Tongchuan SUO, Xinghua ZHANG, Xingkun MAN, Bing MIAO. Self-consistent field theory and its applications in polymer systems. Front Chem Chin, 2011, 6(4): 310‒331 https://doi.org/10.1007/s11458-011-0251-8

References

[1]
de Gennes, P. G., Scaling Concepts in Polymer Physics. Ithaca: Cornell University Press, 1979
[2]
Edwards, S. F., Proc. Phys. Soc.1965, 85, 613–624
CrossRef Google scholar
[3]
Zhang, P.; Zhang, X.; Li, B.; Wang, Q., Soft Matter2011, 7, 4461–4471
CrossRef Google scholar
[4]
Helfand, E.; Tagami, Y., Polym. Lett.1971, 9, 741–746
CrossRef Google scholar
[5]
Helfand, E., J. Chem. Phys.1975, 62, 999–1005
CrossRef Google scholar
[6]
Shi, A. C., Self-consistent field theory of block copolymers. In: Hamley I. W., ed. Developments in Block Copolymer Science and Technology. New York: John Wiley and Sons, Ltd.: 2004, 265–293
[7]
Netz, R. R.; Schick, M., Macromolecules1998, 31, 5105–5122
CrossRef Pubmed Google scholar
[8]
Suo, T.; Yan, D.; Yang, S.; Shi, A.C., Macromolecules2009, 42, 6791–6798
CrossRef Google scholar
[9]
Müller, M.; Schmid, F., Adv. Polym. Sci.2005, 185, 1–58
CrossRef Google scholar
[10]
Yang, S.; Yan, D.; Tan, H., , Phys. Rev. E Stat. Nonlin. Soft Matter Phys.2006, 74, 041808–1–10
[11]
Matsen, M. W.; Schick, M., Phys. Rev. Lett.1994, 72, 2660–2663
CrossRef Pubmed Google scholar
[12]
Fredrickson, G. H., The Equilibrium Theory of Inhomogeneous Polymers, CLARENDON PRESS, OXFORD, 2006
[13]
Ceniceros, H. D.; Fredrickson, G. H., Model. Simul. (Anaheim)2004, 2, 452–474
[14]
Thompson, R. B.; Rasmussen, K. Ø.; Lookman, T., J. Chem. Phys.2004, 120, 31–34
CrossRef Pubmed Google scholar
[15]
Matsen, M. W., Eur Phys J E Soft Matter2009, 30, 361–369
CrossRef Pubmed Google scholar
[16]
Yang, S.; Yan, D.; Shi, A. C., Macromolecules2006, 39, 4168–4174
CrossRef Google scholar
[17]
Yang, S.; Tan, H.; Yan, D., , Phys. Rev. E Stat. Nonlin. Soft Matter Phys.2006, 75, 061803–1–7
[18]
Man, X.; Yang, S.; Yan, D.; Shi, A.C., Macromolecules2008, 41, 5451–5456
CrossRef Google scholar
[19]
Man, X.; Yan, D., Macromolecules2010, 43, 2582–2588
CrossRef Google scholar
[20]
Qi, S.; Yan, D., J. Chem. Phys.2008, 129, 204902
CrossRef Pubmed Google scholar
[21]
Wood, S. M.; Wang, Z. G., J. Chem. Phys.2002, 116, 2289–2300
CrossRef Google scholar
[22]
Guo, Z. J.; Zhang, G.; Qiu, F.; Zhang, H.; Yang, Y.; Shi, A. C., Phys. Rev. Lett.2008, 101, 028301
CrossRef Pubmed Google scholar
[23]
Tyler, C. A.; Morse, D. C., Phys. Rev. Lett.2005, 94, 208302
CrossRef Pubmed Google scholar
[24]
Takenaka, M.; Wakada, T.; Akasaka, S.; Nishitsuji, S.; Saijo, K.; Shimizu, H.; Kim, M. I.; Hasegawa, H., Macromolecules2007, 40, 4399–4402
CrossRef Google scholar
[25]
Miao, B.; Wickham, R. A., J. Chem. Phys.2008, 128, 054902
CrossRef Pubmed Google scholar
[26]
Shi, A-C.; Noolandi, J.; Desai, R. C., Macromolecules1996, 29, 6487–6504; Shi, A. C.; Noolandi, J.; Desai, R. C., Macromolecules1997, 30, 3242–3255
CrossRef Google scholar
[27]
Miao, B.; Yan, D.; Han, C. C.; Shi, A. C., J. Chem. Phys.2006, 124, 144902
CrossRef Pubmed Google scholar
[28]
Miao, B.; Yan, D.; Wickham, R. A.; Shi, A. C., Polymer2007, 48, 4278–4287
CrossRef Google scholar
[29]
Li, W.; Wickham, R. A.; Garbary, R. A., Macromolecules2006, 39, 806–811
CrossRef Google scholar
[30]
Li, W.; Wickham, R. A., Macromolecules2006, 39, 8492–8498
CrossRef Google scholar
[31]
Chen, P.; Liang, H.; Shi, A. C., Macromolecules2008, 41, 8938–8943
CrossRef Google scholar
[32]
Yu, B.; Sun, P.; Chen, T.; Jin, Q.; Ding, D.; Li, B.; Shi, A. C., Phys. Rev. Lett.2006, 96, 138306
CrossRef Pubmed Google scholar
[33]
Kim, E.; Ahn, H.; Ryu, D. Y.; Kim, J.; Cho, J., Macromolecules2009, 42, 8385–8391
CrossRef Google scholar

Acknowledgements

We would to thank the other contributors in our group, who are Dr. Hongge Tan, Dr. Shuang Yang and Dr. Shuanhu Qi. Also, we would like to thank Prof. An-Chang Shi for the long-term collaboration. This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 20973176, 20990234, 50821062, and 20874111), 973 Program of the Ministry of Science and Technology (MOST) (Grant No. 2011CB808502), and the Fundamental Research Funds for the Central Universities.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(751 KB)

Accesses

Citations

Detail

Sections
Recommended

/