Effects of CuCl2·6H2O and ZnCl2·6H2O on the viscosity of aqueous ethanol mixtures

A. Rasheed KHAN, Fahim UDDIN, Rehana SAEED, Mahjabeen MUKHTAR

PDF(128 KB)
PDF(128 KB)
Front. Chem. China ›› 2011, Vol. 6 ›› Issue (2) : 113-119. DOI: 10.1007/s11458-011-0234-9
RESEARCH ARTCILE
RESEARCH ARTCILE

Effects of CuCl2·6H2O and ZnCl2·6H2O on the viscosity of aqueous ethanol mixtures

Author information +
History +

Abstract

The effects of CuCl2 and ZnCl2 on the viscosity in aqueous ethanol mixtures (10%–50% v/v) were studied in the concentration range 1.0×10-2–8.0×10-2 mol·dm-3 at different temperatures. It was found that the viscosities increased with an increase in the concentration of the salts and percent composition of ethanol content, whereas it decreased with an increase in temperature. Ion-ion and ion-solvent interactions are determined with the help of BoldItalic- and BoldItalic-coefficients of Jones-Dole equation. The values of BoldItalic- and BoldItalic-coefficients are irregular and increase with a rise in temperature and also with an increase in ethanol contents for both salts. Negative values of BoldItalic-coefficients show that ion solvent interactions is comparatively small and suggest that CuCl2 and ZnCl2 behave as structure breakers in aqueous ethanol mixtures. Thermodynamic parameters like the energy of activation (BoldItalicη) and change in entropy of activation (ΔBoldItalic*) were also evaluated which confirm the structure breaker behavior of salts in aqueous ethanol mixtures.

Keywords

viscosity / Jones-Dole equation / ionic interactions / transition metal chlorides / thermodynamic parameters

Cite this article

Download citation ▾
A. Rasheed KHAN, Fahim UDDIN, Rehana SAEED, Mahjabeen MUKHTAR. Effects of CuCl2·6H2O and ZnCl2·6H2O on the viscosity of aqueous ethanol mixtures. Front Chem Chin, 2011, 6(2): 113‒119 https://doi.org/10.1007/s11458-011-0234-9

References

[1]
Khan, A. R.; Uddin, F.; Mukhtar, M., J. Chem. Eng. Data2007, 52, 1548–1551
CrossRef Google scholar
[2]
Jones, G.; Dole, M., J. Am. Chem. Soc.1929, 51, 2950–2964
CrossRef Google scholar
[3]
Khan, A. R.; Uddin, F.; Saeed, R., Pak. J. Sci. Ind. Res.2003, 46, 151
[4]
Khan, A. R.; Saeed, R.; Uddin, F., J. Appl. Sci. Environ. Mgt.2005, 9, 15
[5]
Khan, A. R.; Saeed, R.; Uddin, F., J. Appl. Sci. Environ. Mgt.2006, 10, 67
[6]
Khan, A. R.; Saeed, R.; Uddin, F., J. Appl. Sci. Environ. Mgt.2006, 10, 47
[7]
Roy, M. N.; Jha, A. A., J. Chem. Eng. Data2001, 46, 1247
[8]
Al-Kanadary, J. A.; Al-Jimaz, A.S.; Abdul-Latif, A.H., J. Chem. Eng. Data2006, 51, 2074
[9]
Saeed, R.; Uddin, F.; Fazal, A., J. Chem. Eng. Data2002, 47, 1359–1362
CrossRef Google scholar
[10]
Afzal, M.; Saleem, M.; Mehmood, M. T., J. Chem. Eng. Data1989, 34, 339–346
CrossRef Google scholar
[11]
Ganapathy, K.; Ramanuja, R., J. Ind. Chem. Soc.1980, LVII, 613
[12]
Donald, H.; Jenkins, B.; Marcus, Y., J. Chem. Rev.1995, 95, 2695–2724
CrossRef Google scholar
[13]
Saeed, R.; Uddin, F.; Masood, S.; Asif, N., J. Mol. Liq.2009, 146, 112–115
CrossRef Google scholar
[14]
Glasstone, S.; Laidler, K. J.; Eyring, H.The Theory of Rate Process. McGraw Hill. Co., New York 1941, 480
[15]
Qadeer, R.; Khalid, N., J. Chem. Soc. Pak.2005, 27, 462
[16]
Lonesh, S. K.; Jamwal, P.; Kumar, R.J. Indian. Chem. Soc.2006, 83, 156
[17]
Saeed, R.; Masood, S.; Uddin, F., J. Phys. Chem. Liqs.2008, 46, 9–17
CrossRef Google scholar
[18]
El-Dossoki, F. I., J. Mol. Liq.2010, 151, 1–8
CrossRef Google scholar
[19]
Kumar, B. R.; Krishna, P. M.; Banu, S. A.; Jyothi, K. A.; Jyostna, T. S.; Satyanarayana, N., J. Phys. Chem. Liqs.2010, 48, 79–88
CrossRef Google scholar
[20]
Saeed, R.; Masood, S.; Ashfaq, M.; Irfan, A., J. Chem. Eng. Data2009, 54, 3125–3129
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(128 KB)

Accesses

Citations

Detail

Sections
Recommended

/