Aligned polymer fibers produced via an additive electric field

Yufei AI, Hongpeng ZHEN, Jun NIE, Dongzhi YANG

PDF(293 KB)
PDF(293 KB)
Front. Chem. China ›› 2011, Vol. 6 ›› Issue (1) : 44-47. DOI: 10.1007/s11458-011-0226-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Aligned polymer fibers produced via an additive electric field

Author information +
History +

Abstract

Electrospinning is known to be a highly versatile method to produce nanofibers, and several techniques have been developed to align nanofibers. In this paper, poly(vinyl alcohol) (PVA), poly(vinylpyrrolidone) (PVP), poly(propylene carbonate) (PC), poly(ethylene oxide) (PEO), PVA/Chitosan and PVA/Fe3O4 uniaxially aligned ultrafine fibers were obtained with electrospinning method by adding another electric field in the collection area. Alignment of the nanofibers was characterized by the use of digital cameras and field emission scanning electron microscopy, polarized Fourier transform infrared spectroscopy (FTIR), and wide-angle X-ray diffraction (XRD). The mechanism of fiber alignment was investigated as well.

Keywords

align / electrospinning / electrostatic field / orientation

Cite this article

Download citation ▾
Yufei AI, Hongpeng ZHEN, Jun NIE, Dongzhi YANG. Aligned polymer fibers produced via an additive electric field. Front Chem Chin, 2011, 6(1): 44‒47 https://doi.org/10.1007/s11458-011-0226-9

References

[1]
Li, D.; Xia, Y. N., Adv. Mater.2004, 16, 1151–1170
CrossRef Google scholar
[2]
Zhang, S., Nat. Biotechnol.2004, 22, 151–152
CrossRef Pubmed Google scholar
[3]
Zhang, S. G., Nat. Biotechnol.2003, 21, 1171–1178
CrossRef Pubmed Google scholar
[4]
Huang, Z. M.; Zhang, Y. Z.; Kotake, M.; Ramakrishna, S., Compos. Sci. Technol.2003, 63, 2223–2253
CrossRef Google scholar
[5]
Zhang, R.; Ma, P. X., J. Biomed. Mater. Res.2000, 52, 430–438
CrossRef Pubmed Google scholar
[6]
Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L., Biomacromolecules2002, 3, 232–238
CrossRef Pubmed Google scholar
[7]
Fennessey, S. F.; Farris, R. J., Polymer2004, 45, 4217–4225
CrossRef Google scholar
[8]
Pan, H.; Li, L. M.; Hu, L.; Cui, X., Polymer2006, 47, 4901–4904
CrossRef Google scholar
[9]
Li, D.; Wang, Y. L.; Xia, Y. N., Adv. Mater.2004, 16, 361–366
CrossRef Google scholar
[10]
Dalton, P. D.; Klee, D.; Moller, M., Polymer2005, 46, 611–614
CrossRef Google scholar
[11]
Theron, A.; Zussman, E.; Yarin, A. L., Nanotechnology2001, 12, 384–390
CrossRef Google scholar
[12]
Zussman, E.; Theron, A.; Yarin, A. L., Appl. Phys. Lett.2003, 82, 973–975
CrossRef Google scholar
[13]
Sundaray, B.; Subramanian, V.; Natarajan, T. S.; Xiang, R.Z.; Chang, C.C.; Fann, W.S., Appl. Phys. Lett.2004, 84, 1222–1224
CrossRef Google scholar
[14]
Katta, P.; Alessandro, M.; Ramsier, R. D.; Chase, G. G., Nano Lett.2004, 4, 2215–2218
CrossRef Google scholar
[15]
Kakade, M. V.; Givens, S.; Gardner, K.; Lee, K. H.; Chase, D. B.; Rabolt, J. F., J. Am. Chem. Soc.2007, 129, 2777–2782
CrossRef Pubmed Google scholar
[16]
Salalha, W.; Dror, Y.; Khalfin, R. L.; Cohen, Y.; Yarin, A. L.; Zussman, E., Langmuir2004, 20, 9852–9855
CrossRef Pubmed Google scholar

Acknowledgements

The author would like to thank the National Natural Science Foundation of China (No. 50803004) and Beijing City Natural Science Foundation (No. 2112033) for their financial support.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(293 KB)

Accesses

Citations

Detail

Sections
Recommended

/