Synthesis of cyclic carbonates and dimethyl carbonate using CO2 as a building block catalyzed by MOF-5/KI and MOF-5/KI/K2CO3

Jinliang SONG, Binbin ZHANG, Tao JIANG, Guanying YANG, Buxing HAN

PDF(202 KB)
PDF(202 KB)
Front. Chem. China ›› 2011, Vol. 6 ›› Issue (1) : 21-30. DOI: 10.1007/s11458-011-0225-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Synthesis of cyclic carbonates and dimethyl carbonate using CO2 as a building block catalyzed by MOF-5/KI and MOF-5/KI/K2CO3

Author information +
History +

Abstract

The synthesis of cyclic carbonates or dimethyl carbonate (DMC) using CO2 as a building block is a very interesting topic. In this work, we found that the metal-organic framework-5 (MOF-5)/KI was an active and a selective catalytic system for the synthesis of cyclic carbonates from CO2 and epoxides, and MOF-5/KI/K2CO3 was efficient for the preparation of DMC from CO2, propylene, and methanol by a sequential route. The impacts of temperature, pressure, and reaction time length on the reactions were investigated, and the mechanism of the reactions is proposed on the basis of the experimental results.

Keywords

carbon dioxide / cyclic carbonates / dimethyl carbonate (DMC) / metal-organic framework-5 (MOF-5) / sequential route / propylene oxide

Cite this article

Download citation ▾
Jinliang SONG, Binbin ZHANG, Tao JIANG, Guanying YANG, Buxing HAN. Synthesis of cyclic carbonates and dimethyl carbonate using CO2 as a building block catalyzed by MOF-5/KI and MOF-5/KI/K2CO3. Front Chem Chin, 2011, 6(1): 21‒30 https://doi.org/10.1007/s11458-011-0225-x

References

[1]
Tundo, P., Pure Appl. Chem. 2001, 73, 1117–1124
CrossRef Google scholar
[2]
Tundo, P.; Selva, M., Acc. Chem. Res. 2002, 35, 706–716
CrossRef Pubmed Google scholar
[3]
Pacheco, M. A.; Marshall, C. L., Energy Fuels 1997, 11, 2–29
CrossRef Google scholar
[4]
Romano, U.; Tesei, R.; Mauri, M. M.; Rebora, P., Ind. Eng. Chem. Prod. Res. Dev. 1980, 19, 396–403
CrossRef Google scholar
[5]
King, S. T., Catal. Today 1997, 33, 173–182
CrossRef Google scholar
[6]
Sakakura, T.; Choi, J. C.; Yasuda, H., Chem. Rev. 2007, 107, 2365–2387
CrossRef Pubmed Google scholar
[7]
Song, C. S., Catal. Today 2006, 115, 2–32
CrossRef Google scholar
[8]
Gibson, D. H., Chem. Rev. 1996, 96, 2063–2096
CrossRef Pubmed Google scholar
[9]
Fang, S.; Fujimoto, K., Appl. Catal. A Gen. 1996, 142, L1–L3
CrossRef Google scholar
[10]
Tomishige, K.; Sakaihori, S.; Ikeda, Y.; Fujimoto, K., Catal. Lett. 1999, 58, 225–229
CrossRef Google scholar
[11]
Choi, J. C.; He, L. N.; Yasuda, H.; Sakakura, T., Green Chem. 2002, 4, 230–234
CrossRef Google scholar
[12]
Sakakura, T.; Saito, Y.; Okano, M.; Choi, J. C.; Sako, T., J. Org. Chem. 1998, 63, 7095–7096
CrossRef Pubmed Google scholar
[13]
Sakakura, T.; Choi, J. C.; Saito, Y.; Masuda, T.; Sako, T.; Oriyama, T., J. Org. Chem. 1999, 64, 4506–4508
CrossRef Google scholar
[14]
Fujita, S.; Bhanage, B. M.; Ikushima, Y.; Arai, M., Green Chem. 2001, 3, 87–91
CrossRef Google scholar
[15]
Choi, J. C.; Sakakura, T.; Sako, T., J. Am. Chem. Soc. 1999, 121, 3793–3794
CrossRef Google scholar
[16]
Ikeda, Y.; Sakaihori, T.; Tomishige, K.; Fujimoto, K., Catal. Lett. 2000, 66, 59–62
CrossRef Google scholar
[17]
Kishimoto, Y.; Ogawa, I., Ind. Eng. Chem. Res. 2004, 43, 8155–8162
CrossRef Google scholar
[18]
Bhanage, B. M.; Fujita, S. I.; Ikushima, Y.; Torii, K.; Arai, M., Green Chem. 2003, 5, 71–75
CrossRef Google scholar
[19]
Cui, H. Y.; Wang, T.; Wang, F. J.; Gu, C. R.; Wang, P. L.; Dai, Y. Y., Ind. Eng. Chem. Res. 2003, 42, 3865–3870
CrossRef Google scholar
[20]
Chang, Y. H.; Jiang, T.; Han, B. X.; Liu, Z. M.; Wu, W. Z.; Gao, L.; Li, J. C.; Gao, H. X.; Zhao, G. Y.; Huang, J., Appl. Catal. A Gen. 2004, 263, 179–186
CrossRef Google scholar
[21]
Bhanage, B. M.; Fujita, S. I.; Ikushima, Y.; Arai, M., Appl. Catal. A Gen. 2001, 219, 259–266
CrossRef Google scholar
[22]
Li, Y.; Zhao, X. Q.; Wang, Y. J., Appl. Catal. A Gen. 2005, 279, 205–208
CrossRef Google scholar
[23]
Jagtap, S. R.; Bhor, M. D.; Bhanage, B. M., Catal. Commun. 2008, 9, 1928–1931
CrossRef Google scholar
[24]
Tian, J. S.; Miao, C. X.; Wang, J. Q.; Cai, F.; Du, Y.; Zhao, Y.; He, L. N., Green Chem. 2007, 9, 566–571
CrossRef Google scholar
[25]
Moulton, B.; Zaworotko, M. J., Chem. Rev. 2001, 101, 1629–1658
CrossRef Pubmed Google scholar
[26]
Kitagawa, S.; Kitaura, R.; Noro, S., Angew. Chem. Int. Ed. 2004, 43, 2334–2375
CrossRef Google scholar
[27]
Wang, Z.; Cohen, S. M., J. Am. Chem. Soc. 2007, 129, 12368–12369
CrossRef Pubmed Google scholar
[28]
Song, Y. F.; Cronin, L., Angew. Chem. Int. Ed. 2008, 47, 4635–4637
CrossRef Google scholar
[29]
Natarajan, S.; Mandal, S., Angew. Chem. Int. Ed. 2008, 47, 4798–4828
CrossRef Google scholar
[30]
Li, Y.; Yang, R. T., Langmuir 2007, 23, 12937–12944
CrossRef Pubmed Google scholar
[31]
Morris, R. E.; Wheatley, P. S., Angew. Chem. Int. Ed. 2008, 47, 4966–4981
CrossRef Google scholar
[32]
Zlotea, C.; Campesi, R.; Cuevas, F.; Leroy, E.; Dibandjo, P.; Volkringer, C.; Loiseau, T.; Férey, G.; Latroche, M., J. Am. Chem. Soc. 2010, 132, 2991–2997
CrossRef Pubmed Google scholar
[33]
Chen, B.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S., Angew. Chem. Int. Ed. 2006, 45, 1390–1393
CrossRef Google scholar
[34]
Procopio, E. Q.; Linares, F.; Montoro, C.; Colombo, V.; Maspero, A.; Barea, E.; Navarro, J. A. R., Angew. Chem. Int. Ed. 2010, 49, 1–5
[35]
Lor, B. G.; Puebla, G.; Iglesias, M.; Monge, M. A.; Valero, C. R.; Snejko, N., Chem. Mater. 2005, 17, 2568–2573
CrossRef Google scholar
[36]
Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K., Nature 2000, 404, 982–986
CrossRef Pubmed Google scholar
[37]
Pan, L.; Liu, H.; Lei, X.; Huang, X.; Olson, D. H.; Turro, N. J.; Li, J., Angew. Chem. Int. Ed. 2003, 42, 542–546
CrossRef Google scholar
[38]
Alaerts, L.; Séguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P. A.; De Vos, D. E., Chemistry 2006, 12, 7353–7363
CrossRef Pubmed Google scholar
[39]
Gándara, F.; Gomez-Lor, B.; Gutiérrez-Puebla, E.; Iglesias, M.; Monge, M. A.; Proserpio, D. M.; Snejko, N., Chem. Mater. 2008, 20, 72–76
CrossRef Google scholar
[40]
Wu, C. D.; Hu, A.; Zhang, L.; Lin, W., J. Am. Chem. Soc. 2005, 127, 8940–8941
CrossRef Pubmed Google scholar
[41]
Xamena, F. X. L. i.; Casanova, O.; Tailleyr, R. G.; Garcia, H.; Corma, A., J. Catal. 2008, 255, 220–227
CrossRef Google scholar
[42]
Dewa, T.; Saiki, T.; Aoyama, Y., J. Am. Chem. Soc. 2001, 123, 502–503
CrossRef Google scholar
[43]
Hasegawa, S.; Horike, S.; Matsuda, R.; Furukawa, S.; Mochizuki, K.; Kinoshita, Y.; Kitagawa, S., J. Am. Chem. Soc. 2007, 129, 2607–2614
CrossRef Pubmed Google scholar
[44]
Horcajada, P.; Surblé, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Grenéche, J. M.; Margiolaki, I.; Férey, G., Chem. Comm. 2007, 2820–2822
[45]
Liu, H.; Liu, Y.; Li, Y.; Tang, Z.; Jiang, H., J. Phys. Chem. C 2010, 114, 13362–13369
CrossRef Google scholar
[46]
Park, Y. K.; Choi, S. B.; Nam, H. J.; Jung, D. Y.; Ahn, H. C.; Choi, K.; Furukawa, H.; Kim, J., Chem. Commun. 2010, 46, 3086–3088
CrossRef Pubmed Google scholar
[47]
Leus, K.; Muylaert, I.; Vandichel, M.; Marin, G. B.; Waroquier, M.; Van Speybroeck, V.; Van der Voort, P., Chem. Commun. 2010, 46, 5085–5087
CrossRef Pubmed Google scholar
[48]
Huang, L.; Wang, H.; Chen, J.; Wang, Z.; Sun, J.; Zhao, D.; Yan, Y., Microporous Mesoporous Mater. 2003, 58, 105–114
CrossRef Google scholar

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Nos. 21003133 and 20932002), Ministry of Science and Technology of China (Grant No. 2009CB930802), and Chinese Academy of Sciences (Grant No. KJCX2.YW.H16).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(202 KB)

Accesses

Citations

Detail

Sections
Recommended

/