Selective detection of phosphaphenanthrene-containing luminophors with aggregation-induced emission enhancement to transition metal ions
Lijun QIAN, Bin TONG, Shu SUN, Jianbing SHI, Junge ZHI, Yuping DONG
Selective detection of phosphaphenanthrene-containing luminophors with aggregation-induced emission enhancement to transition metal ions
Transition metal ions (Pb2+, Zn2+, Cd2+, Co2+, Mn2+, Cu2+, Ni2+, Hg2+, Ag+, Fe3+) in water are used to quench emission of 2-(6-oxido-6H-dibenz<c,e><1,2>oxaphosphorin-6-yl)-1,4-phenylene-bis(p-pentyloxylbenzoate)s (MD5) with aggregation-induced emission enhancement (AIEE) in water-acetonitrile (AN) mixture (80:20 by volume). Among all metal ions, Fe3+ exhibits the highest quenching efficiency on AIEE of MD5 even when the concentration of Fe3+ is lower than 1×10-6 mol/L. The quenching efficiency of Hg2+ is lower than that of Fe3+ at the same concentration, though MD5 is used to detect Hg2+ efficiently, too. To other metal ions, low quenching efficiency has few relations with a wider concentration range. The UV absorbance spectra show only red shift of absorbance wavelength in the presence of Hg2+ and Fe3+, which indicates a salt-induced J-aggregation. SEM photos reveal larger aggregation and morphological change of nanoparticles of MD5 in water containing Hg2+ and Fe3+, which reduce the surface area of MD5 emission for further aggregation. The selective quenching effect of transition metal ions to emission of MD5 has a potential application in chemical sensors of some metal ions.
AIEE / phosphaphenanthrene / transition metal ions / quenching effect
[1] |
de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Chem. Rev.1997, 97, 1515–1566
CrossRef
Pubmed
Google scholar
|
[2] |
Liu, J.; Lu, Y., J. Am. Chem. Soc.2003, 125, 6642–6643
CrossRef
Pubmed
Google scholar
|
[3] |
Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T., J. Am. Chem. Soc.2007, 129, 1500–1501
CrossRef
Pubmed
Google scholar
|
[4] |
Royzen, M.; Dai, Z.; Canary, J. W., J. Am. Chem. Soc.2005, 127, 1612–1613
CrossRef
Pubmed
Google scholar
|
[5] |
Mandal, A. K.; Suresh, M.; Suresh, E.; Mishra, S. K.; Mishra, S.; Das, A., Sens. Actuators B Chem.2010, 145, 32–38
CrossRef
Google scholar
|
[6] |
Kim, I. B.; Erdogan, B.; Wilson, J. N.; Bunz, U. H. F., Chemistry2004, 10, 6247–6254
CrossRef
Pubmed
Google scholar
|
[7] |
Ono, A.; Togashi, H., Angew. Chem. Int. Ed.2004, 43, 4300–4302
CrossRef
Google scholar
|
[8] |
Moon, S. Y.; Youn, N. J.; Park, S. M.; Chang, S. K., J. Org. Chem.2005, 70, 2394–2397
CrossRef
Pubmed
Google scholar
|
[9] |
Descalzo, A.; Martò′nez-Manez, R.; Radeglia, R.; Rurack, K.; Soto, J., J. Am. Chem. Soc.2003, 125, 3418–3419
CrossRef
Pubmed
Google scholar
|
[10] |
Guo, X. F.; Qian, X. H.; Jia, L. H., J. Am. Chem. Soc.2004, 126, 2272–2273
CrossRef
Pubmed
Google scholar
|
[11] |
Zhang, H.; Han, L. F.; Zachariasse, K. A.; Jiang, Y. B., Org. Lett.2005, 7, 4217–4220
CrossRef
Pubmed
Google scholar
|
[12] |
Yoon, S.; Miller, E. W.; He, Q.; Do, P. H.; Chang, C. J., Angew. Chem. Int. Ed.2007, 46, 6658–6661
CrossRef
Google scholar
|
[13] |
Bricks, J. L.; Kovalchuk, A.; Trieflinger, C.; Nofz, M.; Büschel, M.; Tolmachev, A. I.; Daub, J.; Rurack, K., J. Am. Chem. Soc.2005, 127, 13522–13529
CrossRef
Pubmed
Google scholar
|
[14] |
Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z., Chem. Commun.2001, 1740–1741
CrossRef
Pubmed
Google scholar
|
[15] |
Bhongale, C. J.; Hsu, C. S., Angew. Chem. Int. Ed.2006, 45, 1404–1408
CrossRef
Google scholar
|
[16] |
Chung, J. W.; An, B. K.; Park, S. Y., Chem. Mater.2008, 20, 6750–6755
CrossRef
Google scholar
|
[17] |
An, B. K.; Lee, D. S.; Lee, J. S.; Park, Y. S.; Song, H. S.; Park, S. Y., J. Am. Chem. Soc.2004, 126, 10232–10233
CrossRef
Pubmed
Google scholar
|
[18] |
Qin, A.; Jim, C. K. W.; Tang, Y.; Lam, J. W. Y.; Liu, J.; Mahtab, F.; Gao, P.; Tang, B. Z., J. Phys. Chem. B2008, 112, 9281–9288
CrossRef
Pubmed
Google scholar
|
[19] |
Palayangoda, S. S.; Cai, X.; Adhikari, R. M.; Neckers, D. C., Org. Lett.2008, 10, 281–284
CrossRef
Pubmed
Google scholar
|
[20] |
Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z., Chem. Commun.2009, 4332–4353
CrossRef
Pubmed
Google scholar
|
[21] |
Liu, Y.; Tao, X.; Wang, F.; Dang, X.; Zou, D.; Ren, Y.; Jiang, M., J. Phys. Chem. C2008, 112, 3975–3981
CrossRef
Google scholar
|
[22] |
Wu, Y. T.; Kuo, M. Y.; Chang, Y. T.; Shin, C. C.; Wu, T. C.; Tai, C. C.; Cheng, T. H.; Liu, W. S., Angew. Chem. Int. Ed.2008, 47, 1–5
CrossRef
Google scholar
|
[23] |
Zeng, Q.; Li, Z.; Dong, Y.; Di, C.; Qin, A.; Hong, Y.; Ji, L.; Zhu, Z.; Jim, C. K.; Yu, G.; Li, Q.; Li, Z.; Liu, Y.; Qin, J.; Tang, B. Z., Chem. Commun.2007, 70–72
CrossRef
Pubmed
Google scholar
|
[24] |
Dong, Y.; Lam, J. W. Y.; Qin, A.; Sun, J.; Liu, J.; Li, Z.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Tang, B. Z., Chem. Commun.2007, 3255–3257
CrossRef
Pubmed
Google scholar
|
[25] |
Tong, H.; Hong, Y.; Dong, Y.; Häussler, M.; Li, Z.; Lam, J. W. Y.; Dong, Y.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z., J. Phys. Chem. B2007, 111, 11817–11823
CrossRef
Pubmed
Google scholar
|
[26] |
Tong, H.; Hong, Y.; Dong, Y.; Häussler, M.; Lam, J. W. Y.; Li, Z.; Guo, Z.; Guo, Z.; Tang, B. Z., Chem. Commun.2006, 3705–3707
CrossRef
Pubmed
Google scholar
|
[27] |
Qian, L. J.; Tong, B.; Zhi, J. G.; Yang, F.; Shen, J. B.; Shi, J. B.; Dong, Y. P., Acta Chimi. Sin.2008, 66, 1134–1138
|
[28] |
Hong, Y.; Häussler, M.; Lam, J. W. Y.; Li, Z.; Sin, K. K.; Dong, Y.; Tong, H.; Liu, J.; Qin, A.; Renneberg, R.; Tang, B. Z., Chemistry2008, 14, 6428–6437
CrossRef
Pubmed
Google scholar
|
[29] |
An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y., J. Am. Chem. Soc.2002, 124, 14410–14415
CrossRef
Pubmed
Google scholar
|
[30] |
Itami, K.; Yoshida, J., Chemistry2006, 12, 3966–3974
CrossRef
Pubmed
Google scholar
|
[31] |
Yang, J.; Aschemeyer, S.; Martinez, H. P.; Trogler, W. C., Chem. Commun.2010, 46, 6804–6806
CrossRef
Pubmed
Google scholar
|
[32] |
Qin, A. J.; Lam, J. W. Y.; Tang, L.; Jim, C. K. W.; Zhao, H.; Sun, J. Z.; Tang, B. Z., Macromolecules2009, 42, 1421–1424
CrossRef
Google scholar
|
[33] |
Liu, L.; Zhang, G. X.; Xiang, J. F.; Zhang, D. Q.; Zhu, D. B., Org. Lett.2008, 10, 4581–4584
CrossRef
Pubmed
Google scholar
|
[34] |
Qian, L. J.; Tong, B.; Shen, J. B.; Shi, J. B.; Zhi, J. G.; Dong, Y. Q.; Yang, F.; Dong, Y. P.; Lam, J. W. Y.; Liu, Y.; Tang, B. Z., J. Phys. Chem. B2009, 113, 9098–9103
CrossRef
Pubmed
Google scholar
|
[35] |
Lu, L. D.; Helgeson, R.; Jones, R. M.; McBranch, D.; Whitten, D., J. Am. Chem. Soc.2002, 124, 483–488
CrossRef
Pubmed
Google scholar
|
[36] |
Saito, K., J. Phys. Chem. B2001, 105, 4235–4238
CrossRef
Google scholar
|
[37] |
Shankar, S. S.; Patil, U. S.; Prasad, B. L. V.; Sastry, M., Langmuir2004, 20, 8853–8857
CrossRef
Pubmed
Google scholar
|
[38] |
Henglein, A.; Brancewica, C., Chem. Mater.1997, 9, 2164–2167
CrossRef
Google scholar
|
/
〈 | 〉 |