Probing polymer surfaces and interfaces using sum frequency generation vibrational spectroscopy – a powerful nonlinear optical technique

Xiaolin LU , Zhan CHEN , Gi XUE , Xinping WANG

Front. Chem. China ›› 2010, Vol. 5 ›› Issue (4) : 435 -444.

PDF (226KB)
Front. Chem. China ›› 2010, Vol. 5 ›› Issue (4) : 435 -444. DOI: 10.1007/s11458-010-0220-7
REVIEW ARTICLE
REVIEW ARTICLE

Probing polymer surfaces and interfaces using sum frequency generation vibrational spectroscopy – a powerful nonlinear optical technique

Author information +
History +
PDF (226KB)

Abstract

Sum frequency generation (SFG) vibrational spectroscopy has been proved to be a powerful technique which substantially impacts on many research areas in surface and interfacial sciences. This paper reviews the recent progress of applying this nonlinear optical technique in the studies of polymer surfaces and interfaces. The theoretical background of SFG is introduced first. Current applications of SFG in polymer science are then described in more detail to demonstrate the significance of this technique. Finally, a short summary is presented on this relatively new but widely applicable spectroscopic technique.

Keywords

sum frequency generation vibrational spectroscopy / SFG / nonlinear optical technique / surface and interface / polymer

Cite this article

Download citation ▾
Xiaolin LU, Zhan CHEN, Gi XUE, Xinping WANG. Probing polymer surfaces and interfaces using sum frequency generation vibrational spectroscopy – a powerful nonlinear optical technique. Front. Chem. China, 2010, 5(4): 435-444 DOI:10.1007/s11458-010-0220-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Harrick, N. J., Internal Reflection Spectroscopy; John Wiley & Sons: New York, 1967

[2]

Tamm, L. K.; Tatulian, S. A., Q. Rev. Biophys. 1997, 30, 365–429

[3]

Moskovits, M., Rev. Mod. Phys. 1985, 57, 783–826

[4]

Metiu, H.; Das, P., Annu. Rev. Phys. Chem. 1984, 35, 507–536

[5]

Fadley, C. S., Prog. Surf. Sci. 1984, 16, 275–388

[6]

Somorjai, G. A., Chem. Rev. 1996, 96, 1223–1236

[7]

Shonaike, G. O.; Simon, G. P., eds., Polymer Alloys and Blends; Marcel Dekker: New York, 1999

[8]

Fischer, D. A.; Efimenko, K.; Bhat, R. R.; Sambasivan, S.; Genzer, J., Macromol. Rapid Commun. 2004, 25, 141–149

[9]

Hähner, G., Chem Soc Rev2006, 35, 1244–1255

[10]

Hunt, J. H.; Guyot-Sionnest, P.; Shen, Y. R., Chem. Phys. Lett. 1987, 133, 189–192

[11]

Shen, Y. R., Nature1989, 337, 519–525

[12]

Hirose, C.; Akamatsu, N.; Domen, K., Appl. Spectrosc. 1992, 46, 1051–1072

[13]

Eisenthal, K. B., Chem. Rev. 1996, 96, 1343–1360

[14]

Shen, Y. R., Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 12104–12111

[15]

Conboy, J. C.; Messmer, M. C.; Walker, R. A.; Richmond, G. L., Prog. Colloid Polym. Sci. 1997, 103, 10–20

[16]

Buck, M.; Himmelhaus, M., J. Vac. Sci. Technol. A2001, 19, 2717–2736

[17]

Shen, Y. R., Pure Appl. Chem. 2001, 73, 1589–1598

[18]

Chen, Z.; Shen, Y. R.; Somorjai, G. A., Annu. Rev. Phys. Chem. 2002, 53, 437–465

[19]

Williams, C. T.; Beattie, D. A., Surf. Sci. 2002, 500, 545–576

[20]

Richmond, G. L., Chem. Rev. 2002, 102, 2693–2724

[21]

Wang, H. F.; Gan, W.; Lu, R.; Rao, Y.; Wu, B. H., Int. Rev. Phys. Chem. 2005, 24, 191–256

[22]

Vidal, F.; Tadjeddine, A., Rep. Prog. Phys. 2005, 68, 1095–1127

[23]

Shen, Y. R.; Ostroverkhov, V., Chem. Rev. 2006, 106, 1140–1154

[24]

Zheng, D. S.; Wang, Y.; Liu, A. A.; Wang, H. F., Int. Rev. Phys. Chem. 2008, 27, 629–664

[25]

Allen, H. C.; Casillas-Ituarte, N. N.; Sierra-Hernández, M. R.; Chen, X.; Tang, C. Y., Phys. Chem. Chem. Phys. 2009, 11, 5538–5549

[26]

Geiger, F. M., Annu. Rev. Phys. Chem. 2009, 60, 61–83

[27]

Shen, Y. R., The Principles of Nonlinear Optics; Wiley: New York, 1984

[28]

Zhuang, X.; Miranda, P. B.; Kim, D.; Shen, Y. R., Phys. Rev. B1999, 59, 12632–12640

[29]

Hirose, C.; Akamatsu, N.; Domen, K., Appl. Spectrosc. 1992, 46, 1051–1072

[30]

Guyot-Sionnest, P.; Hunt, J. H.; Shen, Y. R., Phys. Rev. Lett. 1987, 59, 1597–1600

[31]

Wei, X.; Zhuang, X.; Hong, S. C.; Goto, T.; Shen, Y. R., Phys. Rev. Lett. 1999, 82, 4256–4259

[32]

Simpson, G. J.; Rowlen, L. K., J. Am. Chem. Soc. 1999, 121, 2635–2636

[33]

Miranda, P. B.; Shen, Y. R., J. Phys. Chem. B1999, 103, 3292–3307

[34]

Ward, R. N.; Davies, P. B.; Bain, C. D., J. Phys. Chem. 1993, 97, 7141–7143

[35]

Lu, X.; Li, D.; Kristalyn, C. B.; Han, J.; Shephard, N.; Rhodes, S.; Xue, G.; Chen, Z., Macromolecules2009, 42, 9052–9057

[36]

Andrade, J. D., ed., Polymer Surface Dynamics; Plenum Press: New York, 1988

[37]

Park, J. B.; Lakes, R. S., Biomaterials: an Introduction; Plenum Press: New York, 1992

[38]

Carbassi, F.; Morra, M.; Occhiellp, E., Polymer Surfaces: From Physics to Technology; John Wiley and Sons: Chichester, 1994

[39]

Rataner, B. D.; Castner, D. G., eds., Surface Modification of Polymeric Biomaterials; Plenum Press: New York, 1996

[40]

Feast, W. J.; Munro, H. S.; Richards, R. W., eds., Polymer Surfaces and Interfaces II; John Wiley and Sons: New York, 1992

[41]

Zhang, D.; Ward, R. S.; Shen, Y. R.; Somorjai, G. A., J. Phys. Chem. B1997, 101, 9060–9064

[42]

Zhang, D.; Shen, Y. R.; Somorjai, G. A., Chem. Phys. Lett. 1997, 281, 394–400

[43]

Chen, Q.; Zhang, D.; Somorjai, G.; Bertozzi, C. R., J. Am. Chem. Soc. 1999, 121, 446–447

[44]

Wei, X.; Hong, S. C.; Zhuang, X.; Goto, T.; Shen, Y. R., Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics2000, 62, 5160–5172

[45]

Pagliusi, P.; Chen, C. Y.; Shen, Y. R., J. Chem. Phys. 2006, 125, 201104

[46]

Jayathilake, H. D.; Zhu, M. H.; Rosenblatt, C.; Bordenyuk, A. N.; Weeraman, C.; Benderskii, A. V., J. Chem. Phys. 2006, 125, 064706

[47]

Kim, D.; Oh-e, M.; Shen, Y. R., Macromolecules2001, 34, 9125–9129

[48]

Lee, Y. H.; Seo, J.; Yoon, I.; Park, K.M.; Lee, S. S., Anal. Sci. 2001, 17, 805–808

[49]

Wang, J.; Chen, C.; Buck, S. M.; Chen, Z., J. Phys. Chem. B2001, 105, 12118–12125

[50]

Wang, J.; Woodcock, S. E.; Buck, S. M.; Chen, C.; Chen, Z., J. Am. Chem. Soc. 2001, 123, 9470–9471

[51]

Wang, J.; Paszti, Z.; Even, M. A.; Chen, Z., J. Am. Chem. Soc. 2002, 124, 7016–7023

[52]

Chen, C.; Clarke, M. L.; Wang, J.; Chen, Z., Phys. Chem. Chem. Phys. 2005, 7, 2357–2363

[53]

Chen, Z., Polym. Int. 2006, 65, 577–587

[54]

Chen, C. Y.; Loch, C. L.; Wang, J.; Chen, Z., J. Phys. Chem. B2003, 107, 10440–10445

[55]

Chen, C. Y.; Wang, J.; Loch, C. L.; Ahn, D.; Chen, Z., J. Am. Chem. Soc. 2004, 126, 1174–1179

[56]

Loch, C.; Ahn, D.; Chen, C.; Chen, Z., J. Adhes. 2005, 81, 319–345

[57]

Gautam, K. S.; Schwab, A. D.; Dhinojwala, A.; Zhang, D.; Dougal, S. M.; Yeganeh, M. S., Phys. Rev. Lett. 2000, 85, 3854–3857

[58]

Briggman, K. A.; Stephenson, J. C.; Wallace, W. E.; Richter, L. J., J. Phys. Chem. B2001, 105, 2785–2791

[59]

Wilson, P. T.; Richter, L. R.; Wallace, W. E.; Briggman, K. A.; Stephenson, J. C., Chem. Phys. Lett. 2002, 363, 161–168

[60]

Yang, C. S. C.; Wilson, P. T.; Richter, L. J., Macromolecules2004, 37, 7742–7746

[61]

Opdahl, A.; Somorjai, G. A., Langmuir2002, 18, 9409–9412

[62]

Li, G.; Ye, S.; Morita, S.; Nishida, T.; Osawa, M., J. Am. Chem. Soc. 2004, 126, 12198–12199

[63]

Lu, X.; Han, J.; Shephard, N.; Rhodes, S.; Martin, A. D.; Li, D.; Xue, G.; Chen, Z., J. Phys. Chem. B2009, 113, 12944–12951

[64]

Xue, D.; Wang, X.; Ni, H.; Zhang, W.; Xue, G., Langmuir2009, 25, 2248–2257

[65]

Wang, X.; Ni, H.; Xue, D.; Wang, X.; Feng, R. R.; Wang, H. F., J. Colloid Interface Sci. 2008, 321, 373–383

[66]

Ye, X.; Zuo, B.; Deng, M.; Hei, Y.; Ni, H.; Lu, X.; Wang, X., J. Colloid Interface Sci. 2010, 349, 205–214

[67]

Harp, G. P.; Rangwalla, H.; Yeganeh, M. S.; Dhinojwala, A., J. Am. Chem. Soc. 2003, 125, 11283–11290

[68]

Gautam, K. S.; Dhinojwala, A., Phys. Rev. Lett. 2002, 88, 145501

[69]

Yurdumakan, B.; Nanjundiah, K.; Dhinojwala, A., J. Phys. Chem. C2007, 111, 960–965

[70]

Nanjundiah, K.; Hsu, P. Y.; Dhinojwala, A., J. Chem. Phys. 2009, 130, 024702

[71]

Kweskin, S. J.; Komvopoulos, K.; Somorjai, G. A., Langmuir2005, 21, 3647–3652

[72]

Lu, X.; Shephard, N.; Han, J.; Xue, G.; Chen, Z., Macromolecules2008, 41, 8770–8777

[73]

Gracias, D. H.; Zhang, D.; Lianos, L.; Ibach, W.; Shen, Y. R.; Somorjai, G. A., Chem. Phys. 1999, 245, 277–284

[74]

Zhang, C.; Hong, S. C.; Ji, N.; Wang, Y. P.; Wei, K. H.; Shen, Y. R., Macromolecules2003, 36, 3303–3306

[75]

Kweskin, S. J.; Komvopoulos, K.; Somorjai, G. A., J. Phys. Chem. B2005, 109, 23415–23418

[76]

Rangwalla, H.; Schwab, A. D.; Yurdumakan, B.; Yablon, D. G.; Yeganeh, M. S.; Dhinojwala, A., Langmuir2004, 20, 8625–8633

[77]

Harp, G. P.; Rangwalla, H.; Li, G.; Yeganeh, M.; Dhinojwala, A., Macromolecules2006, 39, 7464–7466

[78]

Li, G.; Dhinojwala, A.; Yeganeh, M. S., J. Phys. Chem. B2009, 113, 2739–2747

[79]

Kurian, A.; Prasad, S.; Dhinojwala, A., Macromolecules2010, 43, 2438–2443

[80]

Li, Q.; Hua, R.; Cheah, I. J.; Chou, K. C., J. Phys. Chem. B2008, 112, 694–697

[81]

Guyot-Sionnest, P., Surf. Sci. 2005, 585, 1–2

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (226KB)

1106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/