Probing polymer surfaces and interfaces using sum frequency generation vibrational spectroscopy – a powerful nonlinear optical technique

Xiaolin LU, Zhan CHEN, Gi XUE, Xinping WANG

PDF(226 KB)
PDF(226 KB)
Front. Chem. China ›› 2010, Vol. 5 ›› Issue (4) : 435-444. DOI: 10.1007/s11458-010-0220-7
REVIEW ARTICLE
REVIEW ARTICLE

Probing polymer surfaces and interfaces using sum frequency generation vibrational spectroscopy – a powerful nonlinear optical technique

Author information +
History +

Abstract

Sum frequency generation (SFG) vibrational spectroscopy has been proved to be a powerful technique which substantially impacts on many research areas in surface and interfacial sciences. This paper reviews the recent progress of applying this nonlinear optical technique in the studies of polymer surfaces and interfaces. The theoretical background of SFG is introduced first. Current applications of SFG in polymer science are then described in more detail to demonstrate the significance of this technique. Finally, a short summary is presented on this relatively new but widely applicable spectroscopic technique.

Keywords

sum frequency generation vibrational spectroscopy / SFG / nonlinear optical technique / surface and interface / polymer

Cite this article

Download citation ▾
Xiaolin LU, Zhan CHEN, Gi XUE, Xinping WANG. Probing polymer surfaces and interfaces using sum frequency generation vibrational spectroscopy – a powerful nonlinear optical technique. Front Chem Chin, 2010, 5(4): 435‒444 https://doi.org/10.1007/s11458-010-0220-7

References

[1]
Harrick, N. J., Internal Reflection Spectroscopy; John Wiley & Sons: New York, 1967
[2]
Tamm, L. K.; Tatulian, S. A., Q. Rev. Biophys. 1997, 30, 365–429
CrossRef Google scholar
[3]
Moskovits, M., Rev. Mod. Phys. 1985, 57, 783–826
CrossRef Google scholar
[4]
Metiu, H.; Das, P., Annu. Rev. Phys. Chem. 1984, 35, 507–536
CrossRef Google scholar
[5]
Fadley, C. S., Prog. Surf. Sci. 1984, 16, 275–388
CrossRef Google scholar
[6]
Somorjai, G. A., Chem. Rev. 1996, 96, 1223–1236
CrossRef Google scholar
[7]
Shonaike, G. O.; Simon, G. P., eds., Polymer Alloys and Blends; Marcel Dekker: New York, 1999
[8]
Fischer, D. A.; Efimenko, K.; Bhat, R. R.; Sambasivan, S.; Genzer, J., Macromol. Rapid Commun. 2004, 25, 141–149
CrossRef Google scholar
[9]
Hähner, G., Chem Soc Rev2006, 35, 1244–1255
CrossRef Google scholar
[10]
Hunt, J. H.; Guyot-Sionnest, P.; Shen, Y. R., Chem. Phys. Lett. 1987, 133, 189–192
CrossRef Google scholar
[11]
Shen, Y. R., Nature1989, 337, 519–525
CrossRef Google scholar
[12]
Hirose, C.; Akamatsu, N.; Domen, K., Appl. Spectrosc. 1992, 46, 1051–1072
CrossRef Google scholar
[13]
Eisenthal, K. B., Chem. Rev. 1996, 96, 1343–1360
CrossRef Google scholar
[14]
Shen, Y. R., Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 12104–12111
CrossRef Google scholar
[15]
Conboy, J. C.; Messmer, M. C.; Walker, R. A.; Richmond, G. L., Prog. Colloid Polym. Sci. 1997, 103, 10–20
CrossRef Google scholar
[16]
Buck, M.; Himmelhaus, M., J. Vac. Sci. Technol. A2001, 19, 2717–2736
CrossRef Google scholar
[17]
Shen, Y. R., Pure Appl. Chem. 2001, 73, 1589–1598
CrossRef Google scholar
[18]
Chen, Z.; Shen, Y. R.; Somorjai, G. A., Annu. Rev. Phys. Chem. 2002, 53, 437–465
CrossRef Google scholar
[19]
Williams, C. T.; Beattie, D. A., Surf. Sci. 2002, 500, 545–576
CrossRef Google scholar
[20]
Richmond, G. L., Chem. Rev. 2002, 102, 2693–2724
CrossRef Google scholar
[21]
Wang, H. F.; Gan, W.; Lu, R.; Rao, Y.; Wu, B. H., Int. Rev. Phys. Chem. 2005, 24, 191–256
CrossRef Google scholar
[22]
Vidal, F.; Tadjeddine, A., Rep. Prog. Phys. 2005, 68, 1095–1127
CrossRef Google scholar
[23]
Shen, Y. R.; Ostroverkhov, V., Chem. Rev. 2006, 106, 1140–1154
CrossRef Google scholar
[24]
Zheng, D. S.; Wang, Y.; Liu, A. A.; Wang, H. F., Int. Rev. Phys. Chem. 2008, 27, 629–664
CrossRef Google scholar
[25]
Allen, H. C.; Casillas-Ituarte, N. N.; Sierra-Hernández, M. R.; Chen, X.; Tang, C. Y., Phys. Chem. Chem. Phys. 2009, 11, 5538–5549
CrossRef Google scholar
[26]
Geiger, F. M., Annu. Rev. Phys. Chem. 2009, 60, 61–83
CrossRef Google scholar
[27]
Shen, Y. R., The Principles of Nonlinear Optics; Wiley: New York, 1984
[28]
Zhuang, X.; Miranda, P. B.; Kim, D.; Shen, Y. R., Phys. Rev. B1999, 59, 12632–12640
CrossRef Google scholar
[29]
Hirose, C.; Akamatsu, N.; Domen, K., Appl. Spectrosc. 1992, 46, 1051–1072
CrossRef Google scholar
[30]
Guyot-Sionnest, P.; Hunt, J. H.; Shen, Y. R., Phys. Rev. Lett. 1987, 59, 1597–1600
CrossRef Google scholar
[31]
Wei, X.; Zhuang, X.; Hong, S. C.; Goto, T.; Shen, Y. R., Phys. Rev. Lett. 1999, 82, 4256–4259
CrossRef Google scholar
[32]
Simpson, G. J.; Rowlen, L. K., J. Am. Chem. Soc. 1999, 121, 2635–2636
CrossRef Google scholar
[33]
Miranda, P. B.; Shen, Y. R., J. Phys. Chem. B1999, 103, 3292–3307
CrossRef Google scholar
[34]
Ward, R. N.; Davies, P. B.; Bain, C. D., J. Phys. Chem. 1993, 97, 7141–7143
CrossRef Google scholar
[35]
Lu, X.; Li, D.; Kristalyn, C. B.; Han, J.; Shephard, N.; Rhodes, S.; Xue, G.; Chen, Z., Macromolecules2009, 42, 9052–9057
CrossRef Google scholar
[36]
Andrade, J. D., ed., Polymer Surface Dynamics; Plenum Press: New York, 1988
[37]
Park, J. B.; Lakes, R. S., Biomaterials: an Introduction; Plenum Press: New York, 1992
[38]
Carbassi, F.; Morra, M.; Occhiellp, E., Polymer Surfaces: From Physics to Technology; John Wiley and Sons: Chichester, 1994
[39]
Rataner, B. D.; Castner, D. G., eds., Surface Modification of Polymeric Biomaterials; Plenum Press: New York, 1996
[40]
Feast, W. J.; Munro, H. S.; Richards, R. W., eds., Polymer Surfaces and Interfaces II; John Wiley and Sons: New York, 1992
[41]
Zhang, D.; Ward, R. S.; Shen, Y. R.; Somorjai, G. A., J. Phys. Chem. B1997, 101, 9060–9064
CrossRef Google scholar
[42]
Zhang, D.; Shen, Y. R.; Somorjai, G. A., Chem. Phys. Lett. 1997, 281, 394–400
CrossRef Google scholar
[43]
Chen, Q.; Zhang, D.; Somorjai, G.; Bertozzi, C. R., J. Am. Chem. Soc. 1999, 121, 446–447
CrossRef Google scholar
[44]
Wei, X.; Hong, S. C.; Zhuang, X.; Goto, T.; Shen, Y. R., Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics2000, 62, 5160–5172
CrossRef Google scholar
[45]
Pagliusi, P.; Chen, C. Y.; Shen, Y. R., J. Chem. Phys. 2006, 125, 201104
CrossRef Google scholar
[46]
Jayathilake, H. D.; Zhu, M. H.; Rosenblatt, C.; Bordenyuk, A. N.; Weeraman, C.; Benderskii, A. V., J. Chem. Phys. 2006, 125, 064706
CrossRef Google scholar
[47]
Kim, D.; Oh-e, M.; Shen, Y. R., Macromolecules2001, 34, 9125–9129
CrossRef Google scholar
[48]
Lee, Y. H.; Seo, J.; Yoon, I.; Park, K.M.; Lee, S. S., Anal. Sci. 2001, 17, 805–808
CrossRef Google scholar
[49]
Wang, J.; Chen, C.; Buck, S. M.; Chen, Z., J. Phys. Chem. B2001, 105, 12118–12125
CrossRef Google scholar
[50]
Wang, J.; Woodcock, S. E.; Buck, S. M.; Chen, C.; Chen, Z., J. Am. Chem. Soc. 2001, 123, 9470–9471
CrossRef Google scholar
[51]
Wang, J.; Paszti, Z.; Even, M. A.; Chen, Z., J. Am. Chem. Soc. 2002, 124, 7016–7023
CrossRef Google scholar
[52]
Chen, C.; Clarke, M. L.; Wang, J.; Chen, Z., Phys. Chem. Chem. Phys. 2005, 7, 2357–2363
CrossRef Google scholar
[53]
Chen, Z., Polym. Int. 2006, 65, 577–587
[54]
Chen, C. Y.; Loch, C. L.; Wang, J.; Chen, Z., J. Phys. Chem. B2003, 107, 10440–10445
CrossRef Google scholar
[55]
Chen, C. Y.; Wang, J.; Loch, C. L.; Ahn, D.; Chen, Z., J. Am. Chem. Soc. 2004, 126, 1174–1179
CrossRef Google scholar
[56]
Loch, C.; Ahn, D.; Chen, C.; Chen, Z., J. Adhes. 2005, 81, 319–345
CrossRef Google scholar
[57]
Gautam, K. S.; Schwab, A. D.; Dhinojwala, A.; Zhang, D.; Dougal, S. M.; Yeganeh, M. S., Phys. Rev. Lett. 2000, 85, 3854–3857
CrossRef Google scholar
[58]
Briggman, K. A.; Stephenson, J. C.; Wallace, W. E.; Richter, L. J., J. Phys. Chem. B2001, 105, 2785–2791
CrossRef Google scholar
[59]
Wilson, P. T.; Richter, L. R.; Wallace, W. E.; Briggman, K. A.; Stephenson, J. C., Chem. Phys. Lett. 2002, 363, 161–168
CrossRef Google scholar
[60]
Yang, C. S. C.; Wilson, P. T.; Richter, L. J., Macromolecules2004, 37, 7742–7746
CrossRef Google scholar
[61]
Opdahl, A.; Somorjai, G. A., Langmuir2002, 18, 9409–9412
CrossRef Google scholar
[62]
Li, G.; Ye, S.; Morita, S.; Nishida, T.; Osawa, M., J. Am. Chem. Soc. 2004, 126, 12198–12199
CrossRef Google scholar
[63]
Lu, X.; Han, J.; Shephard, N.; Rhodes, S.; Martin, A. D.; Li, D.; Xue, G.; Chen, Z., J. Phys. Chem. B2009, 113, 12944–12951
CrossRef Google scholar
[64]
Xue, D.; Wang, X.; Ni, H.; Zhang, W.; Xue, G., Langmuir2009, 25, 2248–2257
CrossRef Google scholar
[65]
Wang, X.; Ni, H.; Xue, D.; Wang, X.; Feng, R. R.; Wang, H. F., J. Colloid Interface Sci. 2008, 321, 373–383
CrossRef Google scholar
[66]
Ye, X.; Zuo, B.; Deng, M.; Hei, Y.; Ni, H.; Lu, X.; Wang, X., J. Colloid Interface Sci. 2010, 349, 205–214
CrossRef Google scholar
[67]
Harp, G. P.; Rangwalla, H.; Yeganeh, M. S.; Dhinojwala, A., J. Am. Chem. Soc. 2003, 125, 11283–11290
CrossRef Google scholar
[68]
Gautam, K. S.; Dhinojwala, A., Phys. Rev. Lett. 2002, 88, 145501
CrossRef Google scholar
[69]
Yurdumakan, B.; Nanjundiah, K.; Dhinojwala, A., J. Phys. Chem. C2007, 111, 960–965
CrossRef Google scholar
[70]
Nanjundiah, K.; Hsu, P. Y.; Dhinojwala, A., J. Chem. Phys. 2009, 130, 024702
CrossRef Google scholar
[71]
Kweskin, S. J.; Komvopoulos, K.; Somorjai, G. A., Langmuir2005, 21, 3647–3652
CrossRef Google scholar
[72]
Lu, X.; Shephard, N.; Han, J.; Xue, G.; Chen, Z., Macromolecules2008, 41, 8770–8777
CrossRef Google scholar
[73]
Gracias, D. H.; Zhang, D.; Lianos, L.; Ibach, W.; Shen, Y. R.; Somorjai, G. A., Chem. Phys. 1999, 245, 277–284
CrossRef Google scholar
[74]
Zhang, C.; Hong, S. C.; Ji, N.; Wang, Y. P.; Wei, K. H.; Shen, Y. R., Macromolecules2003, 36, 3303–3306
CrossRef Google scholar
[75]
Kweskin, S. J.; Komvopoulos, K.; Somorjai, G. A., J. Phys. Chem. B2005, 109, 23415–23418
CrossRef Google scholar
[76]
Rangwalla, H.; Schwab, A. D.; Yurdumakan, B.; Yablon, D. G.; Yeganeh, M. S.; Dhinojwala, A., Langmuir2004, 20, 8625–8633
CrossRef Google scholar
[77]
Harp, G. P.; Rangwalla, H.; Li, G.; Yeganeh, M.; Dhinojwala, A., Macromolecules2006, 39, 7464–7466
CrossRef Google scholar
[78]
Li, G.; Dhinojwala, A.; Yeganeh, M. S., J. Phys. Chem. B2009, 113, 2739–2747
CrossRef Google scholar
[79]
Kurian, A.; Prasad, S.; Dhinojwala, A., Macromolecules2010, 43, 2438–2443
CrossRef Google scholar
[80]
Li, Q.; Hua, R.; Cheah, I. J.; Chou, K. C., J. Phys. Chem. B2008, 112, 694–697
CrossRef Google scholar
[81]
Guyot-Sionnest, P., Surf. Sci. 2005, 585, 1–2
CrossRef Google scholar

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Y4100390), the start-up fund of Zhejiang Sci-Tech University (0913845-Y), the funds from the Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University (2009QN07) and the Department of Education of Zhejiang Province (Y200909780). We also acknowledge the financial supports from the National Natural Science Foundation of China (NSFC, Nos. 20704038 and 20874089), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT 0654).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(226 KB)

Accesses

Citations

Detail

Sections
Recommended

/