Semiclassical treatments of electron transfer rate from weak to strong electronic coupling regime

Yi ZHAO , Wanzhen LIANG

Front. Chem. China ›› 2010, Vol. 5 ›› Issue (4) : 423 -434.

PDF (274KB)
Front. Chem. China ›› 2010, Vol. 5 ›› Issue (4) : 423 -434. DOI: 10.1007/s11458-010-0219-0
FEATURE ARTICLE
FEATURE ARTICLE

Semiclassical treatments of electron transfer rate from weak to strong electronic coupling regime

Author information +
History +
PDF (274KB)

Abstract

Electron transfer (ET) rate is a fundamental parameter to characterize ET processes in physical, chemical, material and biologic sciences. It is affected by a number of quantum phenomena, such as nuclear tunneling, curve crossing, quantum interference, and the coupling to the environment. It is thus a challenge to accurately evaluate the ET rate since one has to incorporate both quantum effects and dissipation. In this review article, we present several semiclassical theories proposed in our group to cover the regime from weak to strong electronic coupling. Their applications to some concrete systems are also shown.

Keywords

electron transfer (ET) / solvent dynamic effect / electronic coupling / theoretical study

Cite this article

Download citation ▾
Yi ZHAO, Wanzhen LIANG. Semiclassical treatments of electron transfer rate from weak to strong electronic coupling regime. Front. Chem. China, 2010, 5(4): 423-434 DOI:10.1007/s11458-010-0219-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bixon, M.; Jortner, J., Adv. Chem. Phys. 1999, 106, 35–202

[2]

Levich, V. G., Adv. Electrochem. Electrochem. Eng1965, 4, 249

[3]

Marcus, R. A., J. Chem. Phys. 1956, 24, 966

[4]

Marcus, R. A.; Sutin, N., Biochim. Biophys. Acta1985, 811, 265–322

[5]

Marcus, R. A., Rev. Mod. Phys. 1993, 65, 599–610

[6]

Hush, N. S., Coord. Chem. Rev. 1985, 64, 135–157

[7]

Landau, L. D., Phys. Z. Sowjetunion1932, 2, 46–51

[8]

Zener, C., Proc. R. Soc. Ser. A1932, 137, 696–702

[9]

Stueckelberg, E. C. G., Helv. Phys. Acta1932, 5, 369

[10]

Nakamura, H., Nonadiabatic Transition: Concepts, Basic Theories and Applications; World Scientific Pub. Co. Inc., 2002

[11]

Nakamura, H., J. Theor. Comput. Chem. 2005, 4, 127–137

[12]

Hush, N. S., Electrochim. Acta1968, 13, 1005–1023

[13]

Holstein, T., Philos. Mag. 1978, 37, 49–62

[14]

Zusman, L. D., Chem. Phys. 1980, 49, 295–304

[15]

Burshtein, A. I.; Kofman, A. G., Chem. Phys. 1979, 40, 289–300

[16]

Barzykin, A. V.; Frantsuzov, P. A.; Seki, K.; Tachiya, M., Adv. Chem. Phys. 2002, 123, 511–616

[17]

Calef, D. F.; Wolynes, P. G., J. Phys. Chem. 1983, 87, 3387–3400

[18]

Hynes, J. T., J. Chem. Phys. 1986, 90, 3701–3706

[19]

Rips, I.; Jortner, J., J. Chem. Phys. 1988, 88, 818

[20]

Sumi, H.; Marcus, R. A., J. Chem. Phys. 1986, 84, 4894

[21]

Jortner, J.; Bixon, M., J. Chem. Phys. 1988, 88, 167

[22]

Walker, G. C.; Akesson, E.; Johnson, A. E.; Levinger, N. E.; Barbara, P. F., J. Phys. Chem. 1992, 96, 3728–3736

[23]

Sparpaglione, M.; Mukamel, S., J. Chem. Phys. 1988, 88, 3263

[24]

Jean, J. M.; Friesner, R. A.; Fleming, G. R., J. Chem. Phys. 1992, 96, 5827

[25]

Topaler, M.; Makri, N., J. Phys. Chem. 1996, 100, 4430–4436

[26]

Evans, D. G.; Nitzan, A.; Ratner, M. A., J. Chem. Phys. 1998, 108, 6387

[27]

Wynne, K.; Hochstrasser, R. M., Adv. Chem. Phys. 1999, 107, 263–309

[28]

Wang, H.; Song, X.; Chandler, D.; Miller, W. H., J. Chem. Phys. 1999, 110, 4828

[29]

Thoss, M.; Wang, H.; Miller, W. H., J. Chem. Phys. 2001, 115, 2991

[30]

Mühlbacher, L.; Egger, R., J. Chem. Phys. 2003, 118, 179

[31]

Zhao, Y.; Li, X.; Zheng, Z.; Liang, W. Z., J. Chem. Phys. 2006, 124, 114508

[32]

Zhao, Y.; Liang, W. Z., Phys. Rev. A2006, 74, 032706

[33]

Berezhkovskii, A. M.; Zitserman, V. Y., Chem. Phys. Lett. 1989, 158, 369–374

[34]

Coalson, R. D.; Evans, D. G.; Nitzan, A., J. Chem. Phys. 1994, 101, 436

[35]

Spirina, O. B.; Cukier, R. I., J. Chem. Phys. 1996, 104, 538

[36]

Cho, M. H.; Silbey, R. J., J. Chem. Phys. 1997, 106, 2654

[37]

Bicout, D. J.; Szabo, A., J. Chem. Phys. 1998, 109, 2325

[38]

Golosov, A. A.; Reichman, D. R., J. Chem. Phys. 2001, 115, 9848

[39]

Golosov, A. A.; Frisner, R. A.; Pechukas, P., J. Chem. Phys. 2000, 112, 2095

[40]

Zhao, Y.; Mil’nikov, G.; Nakamura, H., J. Chem. Phys. 2004, 121, 8854–8860

[41]

Zhao, Y.; Liang, W. Z.; Nakamura, H., J. Phys. Chem. A2006, 110, 8204–8212

[42]

Zhao, Y.; Nakamura, H., J. Theor. Comput. Chem. 2006, 5, 299–306

[43]

Zhao, Y.; Han, M. M.; Liang, W. Z.; Nakamura, H., J. Phys. Chem. A2007, 111, 2047–2053

[44]

Zhao, Y.; Mil’nikov, G., Chem. Phys. Lett. 2005, 413, 362–366

[45]

Zhu, W. J.; Han, M. M.; Zhao, Y., Chinese J. Chem. Phys. 2007, 20, 217

[46]

Zhu, W. J.; Zhao, Y., J. Chem. Phys. 2007, 126, 184105

[47]

Zhao, Y., J. Theor. Comput. Chem. 2008, 7, 869–877

[48]

Zhang, W. W.; Zhu, W. J.; Liang, W. Z.; Zhao, Y.; Nelsen, S. F., J. Phys. Chem. B2008, 112, 11079–11086

[49]

Zhu, W. J.; Zhao, Y., J. Chem. Phys. 2008, 129, 184111

[50]

Nelsen, S. F.; Ismagilov, R. F. Trieber, D. A. II., Science1997, 278, 846–849

[51]

Demadis, K. D.; Hartshorn, C. M.; Meyer, T. J., Chem. Rev. 2001, 101, 2655–2686

[52]

Ovchinnikova, M. Y., Theor. Exp. Chem. 1982, 17, 507–509

[53]

Sumi, H.; Marcus, R. A., J. Chem. Phys. 1986, 84, 4272–4276

[54]

Zhu, C.; Nakamura, H., J. Chem. Phys. 1994, 101, 10630

[55]

Zhu, C.; Nakamura, H., J. Chem. Phys. 1995, 102, 7448

[56]

Zhu, C.; Nakamura, H., Adv. Chem. Phys. 2001, 117, 127–233

[57]

Pollak, E.; Grabert, H.; Hänggi, P., J. Chem. Phys. 1989, 91, 4073

[58]

Rips, I. I; Pollak, E., Phys. Rev. A1990, 41, 5366–5382

[59]

Hanggi, P.; Talkner, P.; Borkovec, M., Rev. Mod. Phys. 1990, 62, 251–341

[60]

Griff, U.; Grabert, H.; Hänggi, P.; Riseborough, P. S., Phys. Rev. B1989, 40, 7295–7297

[61]

Jortner, J., J. Chem. Phys. 1976, 64, 4860

[62]

Bixon, M.; Jortner, J., J. Phys. Chem. 1986, 90, 3795–3800

[63]

Miller, W. H.; Schwartz, S. D.; Tromp, J. W., J. Chem. Phys. 1983, 79, 4889

[64]

Fenkel, D.; Smit, B., Understanding Molecular Simulation (Computational Science Series), Vol.1; Academy Press: USA, 2002.

[65]

Rips, I.; Pollak, E., J. Chem. Phys. 1995, 103, 7912

[66]

Rips, I., J. Chem. Phys. 1996, 104, 9795

[67]

Rips, I., J. Chem. Phys. 2004, 121, 5356–5371

[68]

Tully, J. C.; Preston, R. K., J. Chem. Phys. 1971, 55, 562–572

[69]

Keck, J. C., J. Chem. Phys. 1960, 32, 1035

[70]

Anderson, J. B., J. Chem. Phys. 1973, 58, 4684

[71]

Chandler, D., J. Chem. Phys. 1978, 68, 2959

[72]

Bergsma, J. P.; Reimers, J. R.; Wilson, K. R.; Hynes, J. T., J. Chem. Phys. 1986, 85, 5625

[73]

Straub, J. E.; Borkovec, M.; Berne, B. J., J. Chem. Phys. 1988, 89, 4833

[74]

Ciccotti, G.; Ferrario, M.; Hynes, J. T.; Kapral, R., J. Chem. Phys. 1990, 93, 7137

[75]

Pollak, E., J. Chem. Phys. 1986, 85, 865

[76]

Grabert, H., Phys. Rev. Lett. 1988, 61, 1683–1686

[77]

Mel’nikov, V. I.; Meshkov, S. V., J. Chem. Phys. 1986, 85, 1018

[78]

Wolynes, P. G., Phys. Rev. Lett. 1981, 47, 968–971

[79]

Nelsen, S. F.; Weaver, M. N.; Konradsson, A. E.; Telo, J. P.; Clark, T., J. Am. Chem. Soc. 2004, 126, 15431–15438

[80]

Telo, J. P.; Nelsen, S. F.; Zhao, Y., J. Phys. Chem. A2009, 113, 7730–7736

[81]

Grampp, G.; Jaenicke, W., Ber. Bunsenges. Phys. Chem1991, 95, 904

[82]

Nelsen, S. F.; Blackstock, S. C.; Kim, Y., J. Am. Chem. Soc. 1987, 109, 677–682

[83]

Koopmans, T., Physica1934, 1, 104–113

[84]

Paddon-Row, M. N.; Wong, S. S., Chem. Phys. Lett. 1990, 167, 432–438

[85]

Jordan, K. D.; Paddon-row, M. N., Chem. Rev. 1992, 92, 395–410

[86]

Farazdel, A.; Dupuis, M.; Clementi, E.; Aviram, A., J. Am. Chem. Soc. 1990, 112, 4206–4214

[87]

Rodriguez-Monge, L.; Larsson, S., Int. J. Quantum Chem. 1997, 61, 847–857

[88]

You, Z. Q.; Shao, Y.; Hsu, C. P., Chem. Phys. Lett. 2004, 390, 116–123

[89]

Yang, C. H.; Hsu, C. P., J. Chem. Phys. 2006, 124, 244507

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (274KB)

1288

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/