Semiclassical treatments of electron transfer rate from weak to strong electronic coupling regime

Yi ZHAO, Wanzhen LIANG

PDF(274 KB)
PDF(274 KB)
Front. Chem. China ›› 2010, Vol. 5 ›› Issue (4) : 423-434. DOI: 10.1007/s11458-010-0219-0
FEATURE ARTICLE
FEATURE ARTICLE

Semiclassical treatments of electron transfer rate from weak to strong electronic coupling regime

Author information +
History +

Abstract

Electron transfer (ET) rate is a fundamental parameter to characterize ET processes in physical, chemical, material and biologic sciences. It is affected by a number of quantum phenomena, such as nuclear tunneling, curve crossing, quantum interference, and the coupling to the environment. It is thus a challenge to accurately evaluate the ET rate since one has to incorporate both quantum effects and dissipation. In this review article, we present several semiclassical theories proposed in our group to cover the regime from weak to strong electronic coupling. Their applications to some concrete systems are also shown.

Keywords

electron transfer (ET) / solvent dynamic effect / electronic coupling / theoretical study

Cite this article

Download citation ▾
Yi ZHAO, Wanzhen LIANG. Semiclassical treatments of electron transfer rate from weak to strong electronic coupling regime. Front Chem Chin, 2010, 5(4): 423‒434 https://doi.org/10.1007/s11458-010-0219-0

References

[1]
Bixon, M.; Jortner, J., Adv. Chem. Phys. 1999, 106, 35–202
CrossRef Google scholar
[2]
Levich, V. G., Adv. Electrochem. Electrochem. Eng1965, 4, 249
[3]
Marcus, R. A., J. Chem. Phys. 1956, 24, 966
CrossRef Google scholar
[4]
Marcus, R. A.; Sutin, N., Biochim. Biophys. Acta1985, 811, 265–322
[5]
Marcus, R. A., Rev. Mod. Phys. 1993, 65, 599–610
CrossRef Google scholar
[6]
Hush, N. S., Coord. Chem. Rev. 1985, 64, 135–157
CrossRef Google scholar
[7]
Landau, L. D., Phys. Z. Sowjetunion1932, 2, 46–51
[8]
Zener, C., Proc. R. Soc. Ser. A1932, 137, 696–702
CrossRef Google scholar
[9]
Stueckelberg, E. C. G., Helv. Phys. Acta1932, 5, 369
[10]
Nakamura, H., Nonadiabatic Transition: Concepts, Basic Theories and Applications; World Scientific Pub. Co. Inc., 2002
CrossRef Google scholar
[11]
Nakamura, H., J. Theor. Comput. Chem. 2005, 4, 127–137
CrossRef Google scholar
[12]
Hush, N. S., Electrochim. Acta1968, 13, 1005–1023
CrossRef Google scholar
[13]
Holstein, T., Philos. Mag. 1978, 37, 49–62
CrossRef Google scholar
[14]
Zusman, L. D., Chem. Phys. 1980, 49, 295–304
CrossRef Google scholar
[15]
Burshtein, A. I.; Kofman, A. G., Chem. Phys. 1979, 40, 289–300
CrossRef Google scholar
[16]
Barzykin, A. V.; Frantsuzov, P. A.; Seki, K.; Tachiya, M., Adv. Chem. Phys. 2002, 123, 511–616
CrossRef Google scholar
[17]
Calef, D. F.; Wolynes, P. G., J. Phys. Chem. 1983, 87, 3387–3400
CrossRef Google scholar
[18]
Hynes, J. T., J. Chem. Phys. 1986, 90, 3701–3706
CrossRef Google scholar
[19]
Rips, I.; Jortner, J., J. Chem. Phys. 1988, 88, 818
CrossRef Google scholar
[20]
Sumi, H.; Marcus, R. A., J. Chem. Phys. 1986, 84, 4894
CrossRef Google scholar
[21]
Jortner, J.; Bixon, M., J. Chem. Phys. 1988, 88, 167
CrossRef Google scholar
[22]
Walker, G. C.; Akesson, E.; Johnson, A. E.; Levinger, N. E.; Barbara, P. F., J. Phys. Chem. 1992, 96, 3728–3736
CrossRef Google scholar
[23]
Sparpaglione, M.; Mukamel, S., J. Chem. Phys. 1988, 88, 3263
CrossRef Google scholar
[24]
Jean, J. M.; Friesner, R. A.; Fleming, G. R., J. Chem. Phys. 1992, 96, 5827
CrossRef Google scholar
[25]
Topaler, M.; Makri, N., J. Phys. Chem. 1996, 100, 4430–4436
CrossRef Google scholar
[26]
Evans, D. G.; Nitzan, A.; Ratner, M. A., J. Chem. Phys. 1998, 108, 6387
CrossRef Google scholar
[27]
Wynne, K.; Hochstrasser, R. M., Adv. Chem. Phys. 1999, 107, 263–309
CrossRef Google scholar
[28]
Wang, H.; Song, X.; Chandler, D.; Miller, W. H., J. Chem. Phys. 1999, 110, 4828
CrossRef Google scholar
[29]
Thoss, M.; Wang, H.; Miller, W. H., J. Chem. Phys. 2001, 115, 2991
CrossRef Google scholar
[30]
Mühlbacher, L.; Egger, R., J. Chem. Phys. 2003, 118, 179
CrossRef Google scholar
[31]
Zhao, Y.; Li, X.; Zheng, Z.; Liang, W. Z., J. Chem. Phys. 2006, 124, 114508
CrossRef Google scholar
[32]
Zhao, Y.; Liang, W. Z., Phys. Rev. A2006, 74, 032706
CrossRef Google scholar
[33]
Berezhkovskii, A. M.; Zitserman, V. Y., Chem. Phys. Lett. 1989, 158, 369–374
CrossRef Google scholar
[34]
Coalson, R. D.; Evans, D. G.; Nitzan, A., J. Chem. Phys. 1994, 101, 436
CrossRef Google scholar
[35]
Spirina, O. B.; Cukier, R. I., J. Chem. Phys. 1996, 104, 538
CrossRef Google scholar
[36]
Cho, M. H.; Silbey, R. J., J. Chem. Phys. 1997, 106, 2654
CrossRef Google scholar
[37]
Bicout, D. J.; Szabo, A., J. Chem. Phys. 1998, 109, 2325
CrossRef Google scholar
[38]
Golosov, A. A.; Reichman, D. R., J. Chem. Phys. 2001, 115, 9848
CrossRef Google scholar
[39]
Golosov, A. A.; Frisner, R. A.; Pechukas, P., J. Chem. Phys. 2000, 112, 2095
CrossRef Google scholar
[40]
Zhao, Y.; Mil’nikov, G.; Nakamura, H., J. Chem. Phys. 2004, 121, 8854–8860
CrossRef Google scholar
[41]
Zhao, Y.; Liang, W. Z.; Nakamura, H., J. Phys. Chem. A2006, 110, 8204–8212
CrossRef Google scholar
[42]
Zhao, Y.; Nakamura, H., J. Theor. Comput. Chem. 2006, 5, 299–306
CrossRef Google scholar
[43]
Zhao, Y.; Han, M. M.; Liang, W. Z.; Nakamura, H., J. Phys. Chem. A2007, 111, 2047–2053
CrossRef Google scholar
[44]
Zhao, Y.; Mil’nikov, G., Chem. Phys. Lett. 2005, 413, 362–366
CrossRef Google scholar
[45]
Zhu, W. J.; Han, M. M.; Zhao, Y., Chinese J. Chem. Phys. 2007, 20, 217
[46]
Zhu, W. J.; Zhao, Y., J. Chem. Phys. 2007, 126, 184105
CrossRef Google scholar
[47]
Zhao, Y., J. Theor. Comput. Chem. 2008, 7, 869–877
CrossRef Google scholar
[48]
Zhang, W. W.; Zhu, W. J.; Liang, W. Z.; Zhao, Y.; Nelsen, S. F., J. Phys. Chem. B2008, 112, 11079–11086
CrossRef Google scholar
[49]
Zhu, W. J.; Zhao, Y., J. Chem. Phys. 2008, 129, 184111
CrossRef Google scholar
[50]
Nelsen, S. F.; Ismagilov, R. F. Trieber, D. A. II., Science1997, 278, 846–849
CrossRef Google scholar
[51]
Demadis, K. D.; Hartshorn, C. M.; Meyer, T. J., Chem. Rev. 2001, 101, 2655–2686
CrossRef Google scholar
[52]
Ovchinnikova, M. Y., Theor. Exp. Chem. 1982, 17, 507–509
CrossRef Google scholar
[53]
Sumi, H.; Marcus, R. A., J. Chem. Phys. 1986, 84, 4272–4276
CrossRef Google scholar
[54]
Zhu, C.; Nakamura, H., J. Chem. Phys. 1994, 101, 10630
CrossRef Google scholar
[55]
Zhu, C.; Nakamura, H., J. Chem. Phys. 1995, 102, 7448
CrossRef Google scholar
[56]
Zhu, C.; Nakamura, H., Adv. Chem. Phys. 2001, 117, 127–233
CrossRef Google scholar
[57]
Pollak, E.; Grabert, H.; Hänggi, P., J. Chem. Phys. 1989, 91, 4073
CrossRef Google scholar
[58]
Rips, I. I; Pollak, E., Phys. Rev. A1990, 41, 5366–5382
CrossRef Google scholar
[59]
Hanggi, P.; Talkner, P.; Borkovec, M., Rev. Mod. Phys. 1990, 62, 251–341
CrossRef Google scholar
[60]
Griff, U.; Grabert, H.; Hänggi, P.; Riseborough, P. S., Phys. Rev. B1989, 40, 7295–7297
CrossRef Google scholar
[61]
Jortner, J., J. Chem. Phys. 1976, 64, 4860
CrossRef Google scholar
[62]
Bixon, M.; Jortner, J., J. Phys. Chem. 1986, 90, 3795–3800
CrossRef Google scholar
[63]
Miller, W. H.; Schwartz, S. D.; Tromp, J. W., J. Chem. Phys. 1983, 79, 4889
CrossRef Google scholar
[64]
Fenkel, D.; Smit, B., Understanding Molecular Simulation (Computational Science Series), Vol.1; Academy Press: USA, 2002.
[65]
Rips, I.; Pollak, E., J. Chem. Phys. 1995, 103, 7912
CrossRef Google scholar
[66]
Rips, I., J. Chem. Phys. 1996, 104, 9795
CrossRef Google scholar
[67]
Rips, I., J. Chem. Phys. 2004, 121, 5356–5371
CrossRef Google scholar
[68]
Tully, J. C.; Preston, R. K., J. Chem. Phys. 1971, 55, 562–572
CrossRef Google scholar
[69]
Keck, J. C., J. Chem. Phys. 1960, 32, 1035
CrossRef Google scholar
[70]
Anderson, J. B., J. Chem. Phys. 1973, 58, 4684
CrossRef Google scholar
[71]
Chandler, D., J. Chem. Phys. 1978, 68, 2959
CrossRef Google scholar
[72]
Bergsma, J. P.; Reimers, J. R.; Wilson, K. R.; Hynes, J. T., J. Chem. Phys. 1986, 85, 5625
CrossRef Google scholar
[73]
Straub, J. E.; Borkovec, M.; Berne, B. J., J. Chem. Phys. 1988, 89, 4833
CrossRef Google scholar
[74]
Ciccotti, G.; Ferrario, M.; Hynes, J. T.; Kapral, R., J. Chem. Phys. 1990, 93, 7137
CrossRef Google scholar
[75]
Pollak, E., J. Chem. Phys. 1986, 85, 865
CrossRef Google scholar
[76]
Grabert, H., Phys. Rev. Lett. 1988, 61, 1683–1686
CrossRef Google scholar
[77]
Mel’nikov, V. I.; Meshkov, S. V., J. Chem. Phys. 1986, 85, 1018
CrossRef Google scholar
[78]
Wolynes, P. G., Phys. Rev. Lett. 1981, 47, 968–971
CrossRef Google scholar
[79]
Nelsen, S. F.; Weaver, M. N.; Konradsson, A. E.; Telo, J. P.; Clark, T., J. Am. Chem. Soc. 2004, 126, 15431–15438
CrossRef Google scholar
[80]
Telo, J. P.; Nelsen, S. F.; Zhao, Y., J. Phys. Chem. A2009, 113, 7730–7736
CrossRef Google scholar
[81]
Grampp, G.; Jaenicke, W., Ber. Bunsenges. Phys. Chem1991, 95, 904
[82]
Nelsen, S. F.; Blackstock, S. C.; Kim, Y., J. Am. Chem. Soc. 1987, 109, 677–682
CrossRef Google scholar
[83]
Koopmans, T., Physica1934, 1, 104–113
CrossRef Google scholar
[84]
Paddon-Row, M. N.; Wong, S. S., Chem. Phys. Lett. 1990, 167, 432–438
CrossRef Google scholar
[85]
Jordan, K. D.; Paddon-row, M. N., Chem. Rev. 1992, 92, 395–410
CrossRef Google scholar
[86]
Farazdel, A.; Dupuis, M.; Clementi, E.; Aviram, A., J. Am. Chem. Soc. 1990, 112, 4206–4214
CrossRef Google scholar
[87]
Rodriguez-Monge, L.; Larsson, S., Int. J. Quantum Chem. 1997, 61, 847–857
CrossRef Google scholar
[88]
You, Z. Q.; Shao, Y.; Hsu, C. P., Chem. Phys. Lett. 2004, 390, 116–123
CrossRef Google scholar
[89]
Yang, C. H.; Hsu, C. P., J. Chem. Phys. 2006, 124, 244507
CrossRef Google scholar

Acknowledgements

The authors thank Professor Nakamura and Professor Nelsen for valuable collaborations, and also appreciate the contributions from the group members: Dr. Zhu, Dr. Zhang, Mr. Zhen, Miss Han. This work was supported by the National Natural Science Foundation of China (Grant Nos. 20773115, 20833004).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(274 KB)

Accesses

Citations

Detail

Sections
Recommended

/