Controllable synthesis of -MnVO microtubes and hollow microspheres

LIU Yi1, QIAN Yitai2

PDF(155 KB)
PDF(155 KB)
Front. Chem. China ›› 2008, Vol. 3 ›› Issue (4) : 467-470. DOI: 10.1007/s11458-008-0061-9

Controllable synthesis of -MnVO microtubes and hollow microspheres

  • LIU Yi1, QIAN Yitai2
Author information +
History +

Abstract

?-Mn2V2O7 microtubes with a length of 15–25 ?m, 2.5–3.5 ?m external diameter, and ∼ 0.4 ?m wall thickness, as well as ?-Mn2V2O7 hollow microspheres with an average outer diameter of 2 ?m, were successfully synthesized in a suitable molar ratio of NH4VO3 and MnCO3 powders via a hydrothermal process. X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM) were used to characterize the products, and the magnetic susceptibility curve was also measured. In the whole process, the concentration of Mn2+ cations derived from MnCO3 dissolution plays a crucial role in the formation of ?-Mn2V2O7 microtubes and hollow microspheres.

Cite this article

Download citation ▾
LIU Yi, QIAN Yitai. Controllable synthesis of -MnVO microtubes and hollow microspheres. Front. Chem. China, 2008, 3(4): 467‒470 https://doi.org/10.1007/s11458-008-0061-9

References

1. Fey G T-K, Huang D L . Synthesis, characterizationand cell performance of inverse spinel electrode materials for lithiumsecondary batteries. Electrochimica Acta, 1999, 45: 295–314. doi:10.1016/S0013-4686(99)00212-1
2. Prokofieva AV, Kremerb R K, Assmu W . Crystal growth and magnetic properties of α-CuV2O6. J Cryst Growth, 2001, 231: 498–505. doi:10.1016/S0022-0248(01)01511-1
3. Baudrin E, Laruelle S, Denis S . et al.Synthesis and electrochemicalproperties of cobalt vanadates vs. lithium. Solid State Ionics, 1999, 123: 139–153. doi:10.1016/S0167-2738(99)00096-X
4. Kim S S, Ikuta H, Wakihara M . Synthesis and characterization of MnV2O6 as a high capacity anode material for alithium secondary battery, Solid StateIonics, 2001, 139: 57–65. doi:10.1016/S0167-2738(00)00816-X
5. Hara D, Ikuta H, Uchimoto Y et al.. Electrochemical propertiesof manganese vanadium molybdenum oxide as the anode for Li secondarybatteries. J Mater Chem, 2002, 12: 2507–2512. doi:10.1039/b201966c
6. Inagaki M, Morishita T, Hirano M, et al.. Synthesis of MnV2O6 under autogenous hydrothermal conditions and its anodicperformance, Solid State Ionics, 2003, 156: 275–282. doi:10.1016/S0167-2738(02)00679-3
7. Tian H J, Wachs I E, Briand L E . Comparison of UV and visible raman spectroscopy of bulkmetal molybdate and metal vanadate catalysts. J Phys Chem B, 2005, 109: 23491–23499. doi:10.1021/jp053879j
8. Yahia H B, Gaudin E, Darriet J et al.. Synthesis, Crystalstructure, magnetic properties, and electronic structure of the newternary vanadate CuMnVO4. Inorg Chem, 2005, 44: 3087–3093. doi:10.1021/ic048244y
9. Niederberger M, Muhr H J, Krumeich F, et al.. Low-cost synthesis of vanadium oxide nanotubesvia two novel non-alkoxide routes. ChemMater, 2000, 7: 1995–2000. doi:10.1021/cm001028c
10. Kong L F, Shao M W, Xie Q, et al.. Hydrothermal growth of single-crystal CaV6O16·3H2O nanoribbons. J Cryst Growth, 2004, 260: 435–439. doi:10.1016/j.jcrysgro.2003.08.045
11. Yu J G, Yu Jimmy C, Ho W K et al.. J Am Chem Soc, 2004, 126: 3422–3423. doi:10.1021/ja031795n
12. Liu Y, Zhang Y G, Hu Y H et al.. Hydrothermal synthesisof single-crystal beta-AgVO3 nanowires andribbon-like nanowires. Chem Lett, 2005, 34: 146–147. doi:10.1246/cl.2005.146
13. Zachariasen W H . The structure of thortveitite Sc2Si2O7. Z Kristallogr, 1930, 73: 1–6
14. Liao J H, Leroux F, Payen C et al.. Synthesis, structures,magnetic properties, and phase transition of manganese(II) divanadate:Mn2V2O7. J Solid State Chem, 1996, 121: 214–224. doi:10.1006/jssc.1996.0030
15. Liu Z P, Li S, Yang Y et al.. Shape-controlledsynthesis and growth mechanism of one-dimensional nanostructures oftrigonal tellurium. New J Chem, 2003, 27: 1748–1752. doi:10.1039/b306782c
PDF(155 KB)

Accesses

Citations

Detail

Sections
Recommended

/