PDF(155 KB)
Controllable synthesis of -MnVO microtubes and hollow microspheres
Author information
+
1.Department of Chemistry, University of Science and Technology of China; 2.Department of Chemistry, Zaozhuang University;
Show less
History
+
Published |
05 Dec 2008 |
Issue Date |
05 Dec 2008 |
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Fey G T-K, Huang D L . Synthesis, characterizationand cell performance of inverse spinel electrode materials for lithiumsecondary batteries. Electrochimica Acta, 1999, 45: 295–314. doi:10.1016/S0013-4686(99)00212-1
2. Prokofieva AV, Kremerb R K, Assmu W . Crystal growth and magnetic properties of α-CuV2O6. J Cryst Growth, 2001, 231: 498–505. doi:10.1016/S0022-0248(01)01511-1
3. Baudrin E, Laruelle S, Denis S . et al.Synthesis and electrochemicalproperties of cobalt vanadates vs. lithium. Solid State Ionics, 1999, 123: 139–153. doi:10.1016/S0167-2738(99)00096-X
4. Kim S S, Ikuta H, Wakihara M . Synthesis and characterization of MnV2O6 as a high capacity anode material for alithium secondary battery, Solid StateIonics, 2001, 139: 57–65. doi:10.1016/S0167-2738(00)00816-X
5. Hara D, Ikuta H, Uchimoto Y et al.. Electrochemical propertiesof manganese vanadium molybdenum oxide as the anode for Li secondarybatteries. J Mater Chem, 2002, 12: 2507–2512. doi:10.1039/b201966c
6. Inagaki M, Morishita T, Hirano M, et al.. Synthesis of MnV2O6 under autogenous hydrothermal conditions and its anodicperformance, Solid State Ionics, 2003, 156: 275–282. doi:10.1016/S0167-2738(02)00679-3
7. Tian H J, Wachs I E, Briand L E . Comparison of UV and visible raman spectroscopy of bulkmetal molybdate and metal vanadate catalysts. J Phys Chem B, 2005, 109: 23491–23499. doi:10.1021/jp053879j
8. Yahia H B, Gaudin E, Darriet J et al.. Synthesis, Crystalstructure, magnetic properties, and electronic structure of the newternary vanadate CuMnVO4. Inorg Chem, 2005, 44: 3087–3093. doi:10.1021/ic048244y
9. Niederberger M, Muhr H J, Krumeich F, et al.. Low-cost synthesis of vanadium oxide nanotubesvia two novel non-alkoxide routes. ChemMater, 2000, 7: 1995–2000. doi:10.1021/cm001028c
10. Kong L F, Shao M W, Xie Q, et al.. Hydrothermal growth of single-crystal CaV6O16·3H2O nanoribbons. J Cryst Growth, 2004, 260: 435–439. doi:10.1016/j.jcrysgro.2003.08.045
11. Yu J G, Yu Jimmy C, Ho W K et al.. J Am Chem Soc, 2004, 126: 3422–3423. doi:10.1021/ja031795n
12. Liu Y, Zhang Y G, Hu Y H et al.. Hydrothermal synthesisof single-crystal beta-AgVO3 nanowires andribbon-like nanowires. Chem Lett, 2005, 34: 146–147. doi:10.1246/cl.2005.146
13. Zachariasen W H . The structure of thortveitite Sc2Si2O7. Z Kristallogr, 1930, 73: 1–6
14. Liao J H, Leroux F, Payen C et al.. Synthesis, structures,magnetic properties, and phase transition of manganese(II) divanadate:Mn2V2O7. J Solid State Chem, 1996, 121: 214–224. doi:10.1006/jssc.1996.0030
15. Liu Z P, Li S, Yang Y et al.. Shape-controlledsynthesis and growth mechanism of one-dimensional nanostructures oftrigonal tellurium. New J Chem, 2003, 27: 1748–1752. doi:10.1039/b306782c