1. Artus N N, Uemura M, Steponkus P L, Gilmour S J, Lin C, Thomashow M F (1996). Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affectsboth chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA, 93: 13404–13409. doi:10.1073/pnas.93.23.13404
2. Baker S S, Wilhelm K S, Thomashow M F (1994). The 5′ region of Arabidopsis thaliana COR15a has cis-actingelements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 24: 701–713. doi:10.1007/BF00029852
3. Dorn A, Bollekens J, Staub A, Benoist C, Mathis D (1987). A multiplicityof CCAAT box-binding proteins. Cell, 50: 863–872. doi:10.1016/0092‐8674(87)90513‐7
4. Drame K N, Clavel D, Repellin A, Passaquet C, Zuily-Fodil Y (2007). Waterdeficit induces variation in expression of stress-responsive genesin two peanut (Arachis hypogaea L.) cultivars with different tolerance to drought.Plant Physiol Biochem, 45: 236–243. doi:10.1016/j.plaphy.2007.02.002
5. Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003). OsDREB genes in rice, Oryzasativa L., encode transcription activators that functionin drought-, high-salt- and cold-responsive gene expression. Plant J, 33(4): 751–763. doi:10.1046/j.1365‐313X.2003.01661.x
6. Gelinas R, Endlich B, Pfeiffer C, Yagi M, Stamatoyannopoulos G (1985). G-substitutionto A-substitution in the distal CCAAT box of the gamma-globin genein Greek hereditary persistence of fetal hemoglobin. Nature, 313: 323–325. doi:10.1038/313323a0
7. Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F (2000). Overexpressionof the Arabidopsis CBF3 transcriptionalactivator mimics multiple biochemical changes associated with coldacclimation. Plant Physiol, 124: 1854–1865. doi:10.1104/pp.124.4.1854
8. Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptionalactivators as an early step in cold-induced COR gene expression. PlantJ, 16: 433–442. doi:10.1046/j.1365‐313x.1998.00310.x
9. Guarente L, Lalonde B, Gifford P, Alani E (1984). Distinctly regulated tandem upstream activation sites mediate cataboliterepression of the CYC1 gene of S. cerevisiae.Cell, 36: 503–511. doi:10.1016/0092‐8674(84)90243‐5
10. Guy C L (1990). Cold acclimation and freezing stress tolerance: roleof protein metabolism. Annu Rev Plant PhysiolPlant Mol Biol, 41: 187–223
11. Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z (2002). Transcription factor CBF4 is a regulatorof drought adaptation in Arabidopsis. Plant Physiol, 130: 639–648. doi:10.1104/pp.006478
12. Hahn S, Pinkham J, Wei R, Miller R, Guarente L (1988). The HAP3 regulatorylocus of Saccharomyces cerevisiae encodes divergent overlapping transcripts. Mol Cell Biol, 8: 655–663
13. Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 280: 104–106. doi:10.1126/science.280.5360.104
14. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998). Two transcriptionfactors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separatetwo cellular signal transduction pathways in drought- and low-temperature-responsivegene expression, respectively, in Arabidopsis. Plant Cell, 10: 1391–1406. doi:10.1105/tpc.10.8.1391
15. Ludlow M M, Muchow R C (1990). A criticalevaluation of traits for improving crop yields in water-limited environments. Adv Agron, 43: 107–153. doi:10.1016/S0065‐2113(08)60477‐0
16. McNabb D S, Xing Y Y, Guarente L (1995). Cloning of yeast HAP5: a novel subunitof a heterotrimeric complex required for CCAAT binding. Genes Dev, 9: 47–58. doi:10.1101/gad.9.1.47
17. Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J (1999). The Arabidopsis CBF gene family is composed ofthree genes encoding AP2 domain-containing proteins whose expressionis regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol, 119: 463–470. doi:10.1104/pp.119.2.463
18. Muro A F, Bernath V A, Kornblihtt A R (1992). Interaction of the -170-cyclic AMPresponse element with the adjacent CCAAT box in the human fibronectingene promoter. J Biol Chem, 267: 12767–12774
19. Nakashima K, Tran L S, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007). Functional analysis of a NAC-type transcription factor OsNAC6 involvedin abiotic and biotic stress-responsive gene expression in rice. Plant J, 51: 617–630. doi:10.1111/j.1365‐313X.2007.03168.x
20. Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999). Antisense suppressionof proline degradation improves tolerance to freezing and salinityin Arabidopsis thaliana. FEBS Lett, 461: 205–210. doi:10.1016/S0014‐5793(99)01451‐9
21. Pinkham J L, Guarente L (1985). Cloningand molecular analysis of the HAP2 locus: a global regulator of respiratorygenes in Saccharomyces cerevisiae. Mol Cell Biol, 5: 3410–3416
22. Pinkham J L, Olesen J T, Guarente L P (1987). Sequence and nuclear localizationof the Saccharomyces cerevisiae HAP2 protein, a transcriptional activator. Mol Cell Biol, 7: 578–585
23. Raymondjean M, Cereghini S, Yaniv M (1988). Several distinct CCAAT box binding-proteinscoexist in eukaryotic cells. Proc NatlAcad Sci USA, 85: 757–761. doi:10.1073/pnas.85.3.757
24. Redondo-Gomez S, Mateos-Naranjo E, Davy A J, Fernandez-Muno F, Castellanos E M, Luque T, Figueroa M E (2007). Growth and photosynthetic responses to salinity of thesalt-marsh shrub Atriplex portulacoides. Ann Bot, 100: 555–563. doi:10.1093/aob/mcm119
25. Riechmann J L, Meyerowitz E M (1998). The AP2/EREBPfamily of plant transcription factors. Biol Chem, 379: 633–646
26. Rieping M, Schöffl F (1992). Synergisticeffect of upstream sequences, CCAAT box elements, and HSE sequencesfor enhanced expression of chimeric heat-shock genes in transgenictobacco. Mol Gen Genet, 231: 226–232
27. Santoro C, Mermod N, Andrews P C, Tjian R (1988). A family of human CCAAT-box-binding proteins active in transcriptionand DNA replication: cloning and expression of multiple cDNAs. Nature, 334: 218–224. doi:10.1038/334218a0
28. Skinner J S, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger E J, Thomashow M F, Chen T H, Hayes P M (2005). Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol, 59(4): 533–551. doi:10.1007/s11103‐005‐2498‐2
29. Steponkus P L, Uemura M, Joseph R A, Gilmour S J, Thomashow M F (1998). Modeof action of the COR15a gene onthe freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA, 95: 14570–14575. doi:10.1073/pnas.95.24.14570
30. Stockinger E J, Gilmour S J, Thomashow M F (1997). Arabidopsisthaliana CBF1 encodes an AP2 domain-containing transcriptionalactivator that binds to the C-repeat/DRE, a cis-acting DNA regulatoryelement that stimulates transcription in response to low temperatureand water deficit. Proc Natl Acad Sci USA, 94: 1035–1040. doi:10.1073/pnas.94.3.1035
31. Surjus A, Durand M (1996). Lipidchanges in soybean root membranes in response to salt treatment. J Exp Bot, 47: 17–23. doi:10.1093/jxb/47.1.17
32. Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002). Important roles ofdrought- and cold-inducible genes for galactinol synthase in stresstolerance in Arabidopsis thaliana. Plant J, 29: 417–426. doi:10.1046/j.0960‐7412.2001.01227.x
33. Thomashow M F (1999). Plant cold acclimation: Freezing tolerance genes andregulatory mechanisms. Annu Rev Plant PhysiolPlant Mol Biol, 50: 571–599. doi:10.1146/annurev.arplant.50.1.571
34. Thomashow M F (2001). So what's new in the field of plant cold acclimation?Lots! Plant Physiol, 125: 89–93. doi:10.1104/pp.125.1.89
35. Xiong L, Schumaker K S, Zhu J K (2002). Cell signaling during cold, drought,and salt stress. Plant Cell, 14(Suppl): 165–183
36. Yamaguchi-Shinozaki K, Shinozaki K (1994). A novelcis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature,or high-salt stress. Plant Cell, 6: 251–264. doi:10.1105/tpc.6.2.251