RESEARCH ARTICLE

BcDR1, a putative gene, regulates the development and pathogenicity of Botrytis cinerea

  • Bin ZHAO 1 ,
  • Meng ZHENG 2 ,
  • Zhiying SUN 1 ,
  • Zhiyong LI 3 ,
  • Jihong XING , 1 ,
  • Jingao DONG , 1
Expand
  • 1. Molecular Plant Pathology Laboratory, Agricultural University of Hebei, Baoding 071001, China
  • 2. Agriculture Bureau of Langfang, Langfang 065000, China
  • 3. Millet Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050031, China

Received date: 31 Dec 2010

Accepted date: 21 Jan 2011

Published date: 05 Sep 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Botrytis cinerea is one of the important phytopathogenic fungi. Cloning of the genes related to their development and pathogenicity is fundamental to the pathogen control. A mutant (BCt160), which produces abnormal conidia and no sclerotia, was identified from Botrytis cinerea mutant library generated by Agrobacterium tumefaciens-mediated transformation (ATMT). Southern blotting analysis showed that one T-DNA insertion occurred in the genome of the mutant. TAIL-PCR (thermal asymmetric interlaced PCR) and bioinformatic analysis indicated that the exogenous T-DNA insertion occurred in the second exon of a putative gene BC1G_12388.1, named as BcDR1 (B. cinerea development-related gene 1). The function analysis of BcDR1 gene showed that the BcDR1 was related to development, morphological differentiation, and pathogenicity of B. cinerea, suggesting that BcDR1 gene was required for the development and pathogenicity of B. cinerea.

Cite this article

Bin ZHAO , Meng ZHENG , Zhiying SUN , Zhiyong LI , Jihong XING , Jingao DONG . BcDR1, a putative gene, regulates the development and pathogenicity of Botrytis cinerea[J]. Frontiers of Agriculture in China, 2011 , 5(3) : 338 -343 . DOI: 10.1007/s11703-011-1090-6

Acknowledgements

This research was financially supported by the Natural Science Foundation of Hebei, China (No. 08B021).
1
Bahn Y S, Xue C, Idnurm A, Rutherford J C, Heitman J, Cardenas M E (2007). Sensing the environment: lessons from fungi. Nat Rev Microbiol, 5(1): 57–69

DOI

2
Balhadère P V, Foster A J, Talbot N J (1999). Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol Plant Microbe Interact, 12(2): 129–142

DOI

3
Brito N, Espino J J, Gonzalez C (2006). The endo-beta-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. Mol Plant Microbe Interact, 19(1): 25–32

DOI

4
Choquer M, Fournier E, Kunz C, Levis C, Pradier J M, Simon A, Viaud M (2007). Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett, 277(1): 1–10

DOI

5
Cui Z, Ding Z, Yang X, Wang K, Zhu T (2009). Gene disruption and characterization of a class V chitin synthase in Botrytis cinerea. Can J Microbiol, 55(11): 1267–1274

DOI

6
de Groot M J, Bundock P, Hooykaas P J, Beijersbergen A G (1998). Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol, 16(9): 839–842

DOI

7
Drenth A, Goodwin S B, Fry W E, Davidse L C (1993). Genotypic diversity of Phytophthora infestans in the Netherlands revealed by DNA polymorphisms. Phytopathology, 83(10): 1087–1092

DOI

8
Elad Y, Williamson B, Tudzynski P, Delen N (2004) Botrytis spp. and Diseases They Cause in Agricultural Systems---An Introduction. In: Elad Y, Williamson B, Tudzynski P, Delen N, eds. Botrytis: Biology, Pathology and Control. the Netherlands: Kluwer Academic Publishers

9
Fillinger S, Chaveroche M K, Shimizu K, Keller N, D’Enfert C (2002). cAMP and ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans. Mol Microbiol, 44(4): 1001–1016

DOI

10
Jurick W N II, Rollins J A (2007). Deletion of the adenylate cyclase (sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. Fungal Genet Biol, 44(6): 521–530

DOI

11
Kars I, McCalman M, Wagemakers L, van Kan J A (2005). Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10. Mol Plant Pathol, 6(6): 641–652

DOI

12
Lazo G R, Stein P A, Ludwig R A (1991). A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Nat Biotechnol, 9(10): 963–967

DOI

13
Liebmann B, Gattung S, Jahn B, Brakhage A A(2003). cAMP signaling in Aspergillus fumigatus is involved in the regulation of the virulence gene pksP and in defense against killing by macrophages. Mol Genet Genomics, 269(3): 420–435

DOI

14
Michielse C B, Hooykaas P J J, Hondel C A M J J, Ram A F J(2005). Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet, 48(1): 1–17

DOI

15
Mullins E D, Chen X, Romaine P, Raina R, Geiser D M, Kang S (2001). Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology, 91(2): 173–180

DOI

16
Nierman W C, Pain A, Anderson M J, Wortman J R, Kim H S, Arroyo J, Berriman M, Abe K, Archer D B, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer P S, Farman M, Fedorova N, Fedorova N, Feldblyum T V, Fischer R, Fosker N, Fraser A, García J L, García M J, Goble A, Goldman G H, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jiménez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafton A, Latgé J P, Li W, Lord A, Lu C, Majoros W H, May G S, Miller B L, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O’Neil S, Paulsen I, Peñalva M A, Pertea M, Price C, Pritchard B L, Quail M A, Rabbinowitsch E, Rawlins N, Rajandream M A, Reichard U, Renauld H, Robson G D, de Córdoba S R, Rodríguez-Peña J M, Ronning C M, Rutter S, Salzberg S L, Sanchez M, Sánchez-Ferrero J C, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, de Aldana C R V, Weidman J, White O, Woodward J, Yu J H, Fraser C, Galagan J E, Asai K, Machida M, Hall N, Barrell B, Denning D W(2005). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 438(7071): 1151–1156

DOI

17
Piers K L, Heath J D, Liang X, Stephens K M, Nester E W (1996). Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci USA, 93(4): 1613–1618

DOI

18
Rivera M C, Lopez M V, Lopez S E (2009). Mycobiota from Cyclamen persicum and its interaction with Botrytis cinerea. Mycologia, 101(2): 173–181

DOI

19
Rolland S, Jobic C, Fevre M, Bruel C (2003). Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Curr Genet, 44(3): 164–171

DOI

20
Rui O, Hahn M (2007). The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Mol Plant Pathol, 8(2): 173–184

DOI

21
Segmuller N, Ellendorf U, Tudzynski B, Tudzynski P (2007). BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot Cell, 6(2): 211–221

DOI

22
Takano Y, Komeda K, Kojima K, Okuno T (2001). Proper regulation of cyclic AMP-dependent protein kinase is required for growth, conidiation, and appressorium function in the anthracnose fungus Colletotrichum lagenarium. Mol Plant Microbe Interact, 14(10): 1149–1157

DOI

23
Tellier F, Fritz R, Kerhoas L, Ducrot P H, Einhorn J, Carlin-Sinclair A, Leroux P (2008). Characterization of metabolites of fungicidal cymoxanil in a sensitive strain of Botrytis cinerea. J Agric Food Chem, 56(17): 8050–8057

DOI

24
Thevelein J M, Gelade R, Holsbeeks I, Lagatie O, Popova Y, Rolland F, Stolz F, Van de Velde S, Van Dijck P, Vandormael P, Van Nuland A, Van Roey K, Van Zeebroeck G, Yan B (2005). Nutrient sensing systems for rapid activation of the protein kinase A pathway in yeast. Biochem Soc Trans, 33(1): 253–256

DOI

25
Tudzynski P, Siewers V (2004). Approaches to Molecular Genetics and Genomics of Botrytis. In: Elad Y, Williamson B, Tudzynski P, Delen N, eds. Botrytis: Biology, Pathology and Control. The Netherlands: Kluwer Academic Press, 53–66

26
van der Vlugt-Bergmans C J, Wagemakers C A, van Kan J A (1997). Cloning and expression of the cutinase A gene of Botrytis cinerea. Mol Plant Microbe Interact, 10(1): 21–29

DOI

27
van Kan J A (2006). Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci, 11(5): 247–253

DOI

28
Vienken K, Fischer R (2006). The Zn(II)2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans. Mol Microbiol, 61(2): 544–554

DOI

29
Williamson B, Tudzynski B, Tudzynski P, van Kan J A (2007). Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol, 8(5): 561–580

DOI

30
Yamauchi J, Takayanagi N, Komeda K, Takano Y, Okuno T (2004). cAMP-pKA signaling regulates multiple steps of fungal infection cooperatively with Cmk1 MAP kinase in Colletotrichum lagenarium. Mol Plant Microbe Interact, 17(12): 1355–1365

DOI

31
Zhao W, Panepinto J C, Fortwendel J R, Fox L, Oliver B G, Askew D S, Rhodes J C (2006). Deletion of the regulatory subunit of protein kinase A in Aspergillus fumigatus alters morphology, sensitivity to oxidative damage, and virulence. Infect Immun, 74(8): 4865–4874

DOI

32
Zheng L, Campbell M, Murphy J, Lam S, Xu J R (2000). The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Mol Plant Microbe Interact, 13(7): 724–732

DOI

Outlines

/