Molecular characterization and expression analysis of phosphate transporter gene TaPT2-1 in wheat (Triticum aestivum L.)

Xirong CUI, Yongsheng ZHANG, Fanghua ZHAO, Chengjin GUO, Juntao GU, Wenjing LU, Xiaojuan LI, Kai XIAO

PDF(1033 KB)
PDF(1033 KB)
Front. Agric. China ›› 2011, Vol. 5 ›› Issue (3) : 274-283. DOI: 10.1007/s11703-011-1101-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Molecular characterization and expression analysis of phosphate transporter gene TaPT2-1 in wheat (Triticum aestivum L.)

Author information +
History +

Abstract

A transcript-derived fragment (TDF) showing up-regulated expression under low Pi stress and being identical to an uncharacterized phosphate transporter gene TaPT2-1 was cloned in wheat. TaPT2-1 was 2075 bp in length and encoded a 568-aa polypeptide. Transmembrane prediction analysis suggested that TaPT2-1 had 13 conserved transmembrane domains. TaPT2-1 shared much higher similarities to other four homologs from Arabidopsis thaliana, Solanum tuberosum, Capsicum frutescens, and Solanum melongena. The expression of TaPT2-1 was root specific and low Pi inducible, suggesting that it plays roles in roots and is involved in the Pi acquisition under Pi-starved condition. The promoter region of TaPT2-1 was cloned based on genome walk analysis. Several types of cis-regulatory elements, such as low Pi responding and tissue specific, were identified in TaPT2-1 promoter. The transgenic tobacco plants with the integrated TaPT2-1 promoter GUS were generated, and GUS histochemical staining analysis in the roots and leaves of the transgenic plants was performed. The results of GUS staining in roots and leaves under various Pi supply conditions were in accordance with the TaPT2-1 transcripts detected based on RT-PCR analysis. Taken together, the distinct expression of low Pi-induced and root-specific TaPT2-1 suggested that it could be used as the potential gene resource on generation of elite crop germplasms with high Pi use efficiency in the future.

Keywords

wheat (Triticum aestivum L.), phosphate transporter, expression / cis-regulatory element

Cite this article

Download citation ▾
Xirong CUI, Yongsheng ZHANG, Fanghua ZHAO, Chengjin GUO, Juntao GU, Wenjing LU, Xiaojuan LI, Kai XIAO. Molecular characterization and expression analysis of phosphate transporter gene TaPT2-1 in wheat (Triticum aestivum L.). Front Agric Chin, 2011, 5(3): 274‒283 https://doi.org/10.1007/s11703-011-1101-7

References

[1]
Chiou T J, Liu H, Harrison M J (2001). The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant Journal, 25: 281–293
CrossRef Google scholar
[2]
Daram P, Brunner S, Rausch C (1999). Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis.Plant Cell, 11: 2153–2166
[3]
Franco-Zorrilla J M, González E, Bustos R (2004). The transcriptional control of plant response phosphate limitation. Journal of Experimental Botany, 55(396): 285–293
CrossRef Google scholar
[4]
Gu J T, Bao J X, Wang X Y, Guo C J, Li X J, Lu W J, Xiao K (2009). Investigation of differential expressed genes responding to deficient-Pi in wheat as revealed by cDNA-AFLP analysis. Acta Agronomica Sinica, 35(9): 1597–1605
CrossRef Google scholar
[5]
Guo L, Long S, Zhao F, Bao J, Guo C, Xiao Kai (2008). Comparison and biochemical evaluation criteria for phosphorus efficiency in wheat. Journal of Plant Genetic Resources, 9(4): 506–510 (in Chinese)
[6]
Guo L, Zhao Y, Zhang S, Zhang H, Xiao K (2009). Improvement of organic phosphate acquisition in transgenic tobacco plants by overexpression of a soybean phytase gene Sphy1. Frontiers of Agriculture in China, 3(3): 259–265
CrossRef Google scholar
[7]
Hammond J P, Bennett M J, Bowen H C (2003). Changes in genes expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiology, 132: 1–19
CrossRef Google scholar
[8]
Jefferson R A, Kavanagh T A, Bevan M W (1987). GUS fusions: ß-glucoronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6: 3901–3907
[9]
Karthikeyan A S, Varadarajan D K, Mukatira U T, D’Urzo M P, Damsz B, Raghothama K G (2002). Regulated expression of Arabidopsis phosphate transporters. Plant Physiology,130: 221–233
CrossRef Google scholar
[10]
Liu C, Muchhal U S, Uthappa M (1998). Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiology, 116(1): 91–99
CrossRef Google scholar
[11]
Liu H,Trieu A T, Blaylock L A (1998). Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Molecular Plant-Microbe Interactions, 11(1): 14–22
CrossRef Google scholar
[12]
Liu J, Versaw W K, Pumplin N (2008). Closely related members of the Medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities. Journal of Biological Chemistry, 283: 24673–24681
CrossRef Google scholar
[13]
Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D (1997). Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions.Proceedings of the National Academy of Sciences, USA, 94: 7098–7102
CrossRef Google scholar
[14]
Muchhal U S, Pardo J M, Raghothama K G (1996). Phosphate transporters from the higher plant Arabidopsis thaliana.Proceedings of the National Academy of Sciences, USA, 96: 5868–5872
CrossRef Google scholar
[15]
Mudge S R, Rae A L, Diatloff E, Smith F W (2002). Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant Journal, 31: 341–353
CrossRef Google scholar
[16]
Okumura S, Mitsukawa N, Shirano Y, Shibata D (1998). Phosphate transporter gene family of Arabidopsis thaliana. DNA Research, 5: 261–269
CrossRef Google scholar
[17]
Rae A L, Cybinski D H, Jarmey J M, Smith F W (2003). Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Molecular Biology, 53: 27–36
CrossRef Google scholar
[18]
Raghothama K (1999). Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 665–693
CrossRef Google scholar
[19]
Rausch C, Bucher M (2002). Molecular mechanisms of phosphate transport in plants. Planta, 216: 23–37
CrossRef Google scholar
[20]
Rubio V, Linhares F, Solano R, Martin A C, Iglesias J, Leyva A, Paz-Ares J (2001). A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Development, 15: 2122–2133
CrossRef Google scholar
[21]
Schünmann P H D, Richardson A E, Smith F W, Delhaize E (2004). Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). Journal of Experimental Botany, 55: 855–865
CrossRef Google scholar
[22]
Seo H M, Jung Y, Song S (2008). Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice. Biotechnology Letters, 30: 1833–1838
CrossRef Google scholar
[23]
Smith F W, Ealing P M, Dong B, Delhaize E (1997). The cloning of two Arabidopsisgenes belonging to a phosphate transporter family. Plant Journal, 11: 83–92
CrossRef Google scholar
[24]
Smith F W, Rae A L, Hawkesford M J (2000). Molecular mechanisms of phosphate and sulphate transport in plants. Biochimica et Biophysica Acta, 1465: 236–245
CrossRef Google scholar
[25]
Vance C P, Uhde-Stone C, Allan D L (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytologist, 157: 423–447
CrossRef Google scholar

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 30971773) and the Key Laboratory of Crop Growth Regulation of Hebei Province.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(1033 KB)

Accesses

Citations

Detail

Sections
Recommended

/