Development of EST-SSR markers in peanut (Arachis hypogaea L.)

Xinyan WEI, Lifeng LIU, Shunli CUI, Huanying CHEN, Jingjing ZHANG

PDF(91 KB)
PDF(91 KB)
Front. Agric. China ›› 2011, Vol. 5 ›› Issue (3) : 268-273. DOI: 10.1007/s11703-011-1091-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Development of EST-SSR markers in peanut (Arachis hypogaea L.)

Author information +
History +

Abstract

More molecular markers for potential use in peanut genetic research were developed. A total of 92403 EST sequences of peanut (Arachis) in the NCBI database were downloaded and analyzed. 2594 SSRs distributed in 2267 non-redundant EST sequences were detected, with tri-nucleotide motif (65.54%) as the most abundant motif type followed by di-nucleotide motif (28.10%). Among the 92 repeat types, the top eight motif types were AG/TC (20.1%), AAG/TTC (11.8%), AAT/TTA (10.1%), AGG/TCC (6.6%), AGA/TCT (6.3%), AT/TA (5.9%), ACT/TGA (3.8%), and ATG/TAC (3.7%) with higher frequency. A total of 237 primer pairs were successfully designed based on the 2267 SSR-ESTs using DNA star software.

Keywords

peanut / EST-SSR / development

Cite this article

Download citation ▾
Xinyan WEI, Lifeng LIU, Shunli CUI, Huanying CHEN, Jingjing ZHANG. Development of EST-SSR markers in peanut (Arachis hypogaea L.). Front Agric Chin, 2011, 5(3): 268‒273 https://doi.org/10.1007/s11703-011-1091-5

References

[1]
Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000). Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 156(2): 847–854
Pubmed
[2]
Decroocq V, Favé M G, Hagen L, Bordenave L, Decroocq S (2003). Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet, 106(5): 912–922
Pubmed
[3]
Gao L F, Tang J F, Li H W, Jia J Z (2003). Analysis of microsatellites in major crops assessed by computational and experimental approaches. Molecular Breeding, 12(3): 245–261
CrossRef Google scholar
[4]
Gimenes M A, Hoshino A A, Barbosa A V, Palmieri D A, Lopes C R (2007). Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biol, 7: 9–21
CrossRef Pubmed Google scholar
[5]
Gupta P K, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H S (2003). Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics, 270(4): 315–323
CrossRef Pubmed Google scholar
[6]
Han Z Q, Gao G Q, Wei P X, Tang R H, Zhong R C (2004). Analysis of DNA polymorphism and genetic relationships in cultivated peanut (Arachis hypogaea L.) using microsatellite markers. Acta Agron Sin, 11: 1097–1101 (in Chinese)
[7]
He G, Meng R, Newman M, Gao G, Pittman R N, Prakash C S (2003). Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol, 3: 3–8
CrossRef Pubmed Google scholar
[8]
Hong Y B, Chen X P, Liang X Q, Liu H Y, Zhou G Y, Li S X, Wen S J, Holbrook C C, Guo B Z (2010). A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol, 10: 17–39
CrossRef Pubmed Google scholar
[9]
Hong Y B, Liang X Q, Chen X P, Lin K Y, Zhou G Y, Li S X, Liu H Y (2008). Genetic differences in peanut cultivated types (Arachis hypogaea) revealed by SSR polymorphism. Mol Plant Breed, 6(1): 71–78 (in Chinese)
[10]
Hopkins M S, Casa A M, Wang T, Mitchell S E, Dean R E, Kochert G D, Kresovich S (1999). Discovery and characterization of polymorphic simple sequence repeat (SSRs) in peanut. Crop Science, 39(4): 1243–1248
CrossRef Google scholar
[11]
Kantety R V, La Rota M, Matthews D E, Sorrells M E (2002). Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol, 48(5/6): 501–510
CrossRef Pubmed Google scholar
[12]
Li Y Q, Li H W, Gao Li F, He B R (2004). Prograss of simple sequence repeats derived from expressed sequence tags. Journal of Plant Genetic Resources, 5: 91–95 (in Chinese)
[13]
Liang X Q, Chen X P, Hong Y B, Liu H, Zhou G Y, Li S X, Guo B Z (2009). Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol, 9: 35–43
CrossRef Pubmed Google scholar
[14]
Moretzsohn M C, Hopkins M S, Mitchell S E, Kresovich S, Valls J F, Ferreira M E (2004). Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol, 4: 11–20
CrossRef Pubmed Google scholar
[15]
Moretzsohn M C, Leoi L, Proite K, Guimarães P M, Leal-Bertioli S C, Gimenes M A, Martins W S, Valls J F, Grattapaglia D, Bertioli D J (2005). A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet, 111(6): 1060–1071
CrossRef Pubmed Google scholar
[16]
Powell W, Machray G C, Provan J (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, l: 215–222
[17]
Proite K, Leal-Bertioli S C, Bertioli D J, Moretzsohn M C, da Silva F R, Martins N F, GuimarãesP M (2007). ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol, 7: 7–16
CrossRef Pubmed Google scholar
[18]
Raina S N, Rani V, Kojima T, Ogihara Y, Singh K P, Devarumath R M (2001). RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome, 44(5): 763–772
CrossRef Pubmed Google scholar
[19]
Shangguan L F, Li X Y, Song C N, Wang X C, Wang Y Z, Zhang Z, Fang J G (2010). Development of EST-SSR markers in Prunusmume and its application. Acta Botanica Boreali-Occidentalia Sinica, 30(9): 1766–1772 (in Chinese)
[20]
Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B (2004). A new integrated genetic linkage map of the soybean. Theor Appl Genet, 109(1): 122–128
CrossRef Pubmed Google scholar
[21]
Tang R H, Gao G Q, He L Q, Han Zh Q, Shan Sh H, Zhong R Ch, Zhou C Q, Jiang J, Li Y R, Zhuang W J (2007). Genetic diversity in cultivated groundnut based on SSR markers. Journal of Genetics and Genomics, 34(5): 449–459
CrossRef Pubmed Google scholar
[22]
Tang R H, Zhuang W J, Gao G Q, Han Zh Q, Zhong R Ch, He L Q, Zhou C Q (2004). Simple sequence repeats polymorphism among accessions of var.vulgaris Harz in Arachis hypogaea L.. Chinese Journal of Oil Crop Sciencs, 26(2): 21–26 (in Chinese)
[23]
Varshney R K, Bertioli D J, Moretzsohn M C, Vadez V, Krishnamurthy L, Aruna R, Nigam S N, Moss B J, Seetha K, Ravi K, He G, Knapp S J, Hoisington D A (2009). The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet, 118(4): 729–739
CrossRef Pubmed Google scholar
[24]
Varshney R K, Graner A, Sorrells M E (2005). Genic microsatellite markers in plants: features and applications.Trends Biotechnol, 23(1): 48–55
CrossRef Pubmed Google scholar

Acknowledgements

This work was financially supported by the Natural Science Fund of Hebei Province, China (No. C2009000591), Project for the study of Application Foundation of Hebei Province, China (No. 10960120D) and the special fund for Modern Agro-industry Technology Research System, China.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(91 KB)

Accesses

Citations

Detail

Sections
Recommended

/