Effects of growth regulators on the respiration metabolism of pear buds during dormant period

Lei BI, Yuxing ZHANG, Bharat Kumar POUDYAL

PDF(243 KB)
PDF(243 KB)
Front. Agric. China ›› 2011, Vol. 5 ›› Issue (1) : 45-50. DOI: 10.1007/s11703-010-1051-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Effects of growth regulators on the respiration metabolism of pear buds during dormant period

Author information +
History +

Abstract

The effects of growth regulators on the respiration metabolism of pear buds during dormant period were studied in this experiment. The results showed that, during early dormant period, the respiration intensity of pear buds was infirm and increased slowly. As the weather became very cold, the respiration intensity rapidly declined, and after that it changed a little. In the later stage of dormant period, the respiration intensity rose rapidly. The maximum value appeared on January 4th, at 0.390 mo1 O2·g-1 FW·min-1, but thereafter declined to its original level. Under natural conditions, three respiratory pathways showed different changes. Pentose phosphate pathway might be the main reason for dormancy release in pear buds. The exogenous gibberellins were more efficient than salicylic acid in increasing the respiration rate. The exogenous SA appeared to play a more important role than exogenous GA3 in phosphopentose pathway. The effect of gibberellins would be more effective than SA in tricarboxylic acid cycle (TCA). The respiration rate of glycolysis was not affected by gibberellins and salicylic acid.

Keywords

pear / dormancy / respiration intensity / growth regulators

Cite this article

Download citation ▾
Lei BI, Yuxing ZHANG, Bharat Kumar POUDYAL. Effects of growth regulators on the respiration metabolism of pear buds during dormant period. Front Agric Chin, 2011, 5(1): 45‒50 https://doi.org/10.1007/s11703-010-1051-5

References

[1]
Abbott D L (1955). Temperature and the dormancy of apple seeds. Proc 14th Intern Hort Cong, 1: 746–753
[2]
Bogatek K A (1997). Respiratory activity of apple seeds during dormancy removal and germination. Physiol Veg, 22(2): 181–191
[3]
Boilek B M (1953). The respiration of acer buds in relation to the inception and termination of the winter rest. Plant Physiol, 6(1): 47–64
CrossRef Google scholar
[4]
Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty C R, Schmitt J (2005). Niche construction through germination cueing: life-history responses to timing of germination in Arabidopsis thaliana. Evolution, 59(4): 771–785
[5]
Finch-Savage W E, Leubner-Metzger G (2006). Seed dormancy and the control of germination. New Phytol, 171(3): 501–523
CrossRef Google scholar
[6]
Garcia J L, Sponsel V M, Gaskin P (1987). Gibberellins in developing fruits of Pisuni sativum cv. Alaska: studies on their role in pod growth and seed development. Planta, 170(1): 130–137
CrossRef Google scholar
[7]
Gubler F, Millar A A, Jacobsen J V (2005). Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol, 8(2): 183–187
CrossRef Google scholar
[8]
Hilhorst H W M (1995). A critical update on seed dormancy. I. Primary dormancy. Seed Sci Res, 5(2): 61–73
CrossRef Google scholar
[9]
Li X L, Yuan Z Y, Gao D S (2001). Factors that influence bud dormancy in deciduous fruit trees. Shandong Univ (Nat Sci), 32(3): 386–392
[10]
Myking T (1997). Effects of constant and fluctuating temperature on time to budburst in Butula pubescens and its relation to bud respiration. Trees (Berl), 12(2): 107–112
CrossRef Google scholar
[11]
Nir G, Shulman Y, Fanberstein L (1986). Changes in the activity of catalase (EC1.11.1.6) in relation to the dormancy of grapevine (vitis vinifera L.) buds. Plant Physiol, 81(4): 1140–1142
CrossRef Google scholar
[12]
Ögren E (2000). Maintenance respiration correlates with sugar but not nitrogen concentration in dormant plants. Physiologia Plantarum, 108(3): 295–299
CrossRef Google scholar
[13]
Shulman Y, Nir G, Fanberstein L, Lavee S (1983). The effect of cyanamide on the release from dormancy of grapevine buds. Scientia Hort, 19: 97–104
CrossRef Google scholar
[14]
Sponsel V M (1983). The localization, metabolism and biological activity of gibberellins in maturing and germinating seeds of Pisum sativum cv. Progress No.9. Planta, 159(5): 454–468
CrossRef Google scholar
[15]
Vegis A (1964). Dormancy in higher plants. Annu Rev Plant Physiol, 15(1): 185–224
CrossRef Google scholar
[16]
Wang S Y, Jiao H J, Faust M (1999). Change in the activities of catalase, peroxidase, and polyphenol oxididase in apple buds during bud break induced by thidiazuron. Journal of Plant Growth Regulation, 10: 33–39
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(243 KB)

Accesses

Citations

Detail

Sections
Recommended

/