Regulation of the type IIb sodium-dependent phosphate cotransporter expression in the intestine

Bin WANG, Yulong YIN

Front. Agric. China ›› 2009, Vol. 3 ›› Issue (2) : 226-230.

PDF(85 KB)
PDF(85 KB)
Front. Agric. China ›› 2009, Vol. 3 ›› Issue (2) : 226-230. DOI: 10.1007/s11703-009-0037-7
REVIEW
REVIEW

Regulation of the type IIb sodium-dependent phosphate cotransporter expression in the intestine

Author information +
History +

Abstract

Phosphate (Pi) plays important roles in growth, development, bone mineralization, energy metabolism, nucleic acid synthesis, cell signaling, and acid–base regulation. The rate of intestinal absorption of Pi is a major determinant of Pi homeostasis. The type IIb sodium-dependent Pi cotransporter (NaPi-IIb) is responsible for intestinal Pi absorption. Many physiological factors regulate the rate of Pi absorption via modulating the expression of NaPi-IIb in the intestine. In this review, we summarize the role of these factors in the regulation of NaPi-IIb expression in the intestine.

Keywords

NaPi-IIb / expression / intestine / regulation

Cite this article

Download citation ▾
Bin WANG, Yulong YIN. Regulation of the type IIb sodium-dependent phosphate cotransporter expression in the intestine. Front Agric Chin, 2009, 3(2): 226‒230 https://doi.org/10.1007/s11703-009-0037-7

References

[1]
Arima K, Hines E R, Kiela P R, Drees J B, Collins J F, Ghishan F K (2002). Glucocorticoid regulation and glycosylation of mouse intestinal type IIb Na-Pi cotransporter during ontogeny. Am J Physiol Gastrointest Liver Physiol, 283: G426-G434
[2]
Caverzasio J, Danisi G, Straub R W, Murer H, Bonjour J P (1987). Adaptation of phosphate transport to low phosphate diet in renal and intestinal brush border membranes: influence of sodium and pH. Pflügers Arch, 409: 333-336
[3]
Cross H S, Debiec H, Peterlik M (1990). Mechanism and regulation of intestinal phosphate absorption. Miner Electrolyte Metab, 16: 115-124
[4]
Feild J A, Zhang L, Brun K A, Brooks D P, Edwards R M (1999). Cloning and functional characterization of a sodium-dependent phosphate transporter expressed in human lung and small intestine. Biochem Biophys Res Commun, 258: 578-582
CrossRef Google scholar
[5]
Feng D Y, Zhou X Y, Zuo J J, Zhang C M, Yin Y L, Wang X Q, Wang T (2008). Segmental distribution and expression of two heterodimeric amino acid transporter mRNAs in the intestine of pigs during different ages. Journal of the Science of Food and Agriculture, 88: 1012-1018
CrossRef Google scholar
[6]
Gafter U, Edelstein S, Hirsh J, Levi J (1986). Metabolic acidosis enhances 1, 25(OH)2D3-induced intestinal absorption of calcium and phosphorus in rats. Miner Electrolyte Metab, 12: 213-217
[7]
Hattenhauer O, Traebert M, Murer H, Biber J (1999). Regulation of small intestinal Na-Pi type IIb cotransporter by dietary phosphate intake. Am J Physiol Gastrointest Liver Physiol, 277: G756-G762
[8]
Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J (1998). Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA, 95: 14564-14569
CrossRef Google scholar
[9]
Huber K, Walter C, Schröder B, Breves G (2002). Phosphate transport in the duodenum and jejunum of goats and its adaptation by dietary phosphate and calcium. Am J Physiol Regul Integr Comp Physiol, 283: R296-R302
[10]
Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tanaka H, Tani Y, Arai H, Tatsumi S, Morita K, Taketani Y, Takeda E (1999). Regulation of intestinal Na-dependent phosphate co-transporters by a low-phosphate diet and 1, 25-dihydroxyvitamin D3. Biochem J, 343: 705-712
CrossRef Google scholar
[11]
Murer H, Forster I, Biber J (2003). The sodium phosphate cotransporter family SLC34. Pflugers Arch, 447: 763-767
CrossRef Google scholar
[12]
Radanovic T, Wagner C A, Murer H, Biber J (2005). Regulation of intestinal phosphate transport I. Segmental expression and adaptation to low-Pi diet of the type IIb Na-Pi cotransporter in mouse small intestine. Am J Physiol Gastrointest Liver Physiol, 288: G496-G500
CrossRef Google scholar
[13]
Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, Kato S, Miyamoto K (2004). Intestinal Na-Pi cotransporter adaptation to dietary Pi content in vitamin D receptor null mice. Am J Physiol Renal Physiol, 287: F39-F47
CrossRef Google scholar
[14]
Trump B F, Berezesky I K (1995). Calcium-mediated cell injury and cell death. The FASEB Journal, 9: 219-228
[15]
Xu H, Bai L, Collins J F, Ghishan F K (2002). Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1, 25-(OH)2 vitamin D3. Am J Physiol Cell Physiol, 282: C487-C493
[16]
Xu H, Jennifer K, Inouye U M, Collins J F, Ghishan F K (2005). NF1 transcriptional factor(s) is required for basal promoter activation of the human intestinal NaPi-IIb cotransporter gene. Am J Physiol Gastrointest Liver Physiol, 288: 175-181
CrossRef Google scholar
[17]
Xu H, Uno J K, Inouye M, Xu L, Drees J B, Collins J F, Ghishan F K (2003). Regulation of intestinal NaPi-IIb cotransporter gene expression by estrogen. Am J Physiol Gastrointest Liver Physiol, 285: G1317-G1324

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(85 KB)

Accesses

Citations

Detail

Sections
Recommended

/