PDF(110 KB)
The application of asymmetric PCR-SSCP in gene
mutation detecting
- ZHANG Xiaohui, XU Shangzhong, GAO Xue, ZHANG Lupei, REN Hongyan, CHEN Jinbao
Author information
+
Institute of Animal Sciences, the Chinese Academy of Agricultural Sciences
Show less
History
+
Published |
05 Sep 2008 |
Issue Date |
05 Sep 2008 |
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Bhide M R, Mikula I (2005). AsymmetricPCR-SSCP: a useful tool for detection of OLA-DRB1 (MHC Class II) genepolymorphism in Slovak Improved Valachian sheep. Acta Vet Brno, 74: 275–278
2. Boutin P, Hani E H, Vasseur F, Roche C, Bailleul B, Hager J, Froguel P (1997). Automatedfluorescence-based screening for mutation by SSCP: use of universalM13 dye primers for labeling and detection. Biotechniques, 23(3): 358–362
3. Butler J M, Jiang B P, Belgrader P (2001). Automation in genotyping of singlenucleotide polymorphisms. Human Mutation, 17: 475–492. doi:10.1002/humu.1131
4. Ho-Pun-Cheung A, Choblet S, Colineau T, Abaibou H, Zsoldos D, Brengel-Pesce K, Grenier J, Cleuziat P, Lopez-Crapez E (2006). Detection of single nucleotide polymorphismsby minisequencing on a polypyrrole DNA chip designed for medical diagnosis. Lab Invest, 86(3): 304–313. doi:10.1038/labinvest.3700387
5. Glavac D, Dean M (1993). Optimizationof the single-strand conformation polymorphism (SSCP) technique fordetection of point mutations. Hum Mutat, 2(5): 404–414. doi:10.1002/humu.1380020513
6. Isabelle T (1993). Excess PCR primers may dramatically affect SSCP efficiency. Nucleic Acids Research, 21(16): 3909–3910. doi:10.1093/nar/21.16.3909
7. Kim B C, Park J H, Gu M B (2004). Development of a DNA microarray chipfor the identification of sludge bacteria using an unsequenced randomgenomic DNA hybridization method. EnvironSci Technol, 38(24): 6767–6774. doi:10.1021/es035398o
8. Kiyama M, Fujita T (1996). High-throughputasymmetric-PCR SSCP analysis using well-controlled temperature conditions. Biotechniques, 21(4): 710–716
9. Kozlowski P, Krzyzosiak W J (2004). Optimumsample medium for single-nucleotide polymorphism and mutation detectionby capillary electrophoresis. Electrophoresis, 25(8): 990–998. doi:10.1002/elps.200305782
10. Lazaro C, Estivill X (1992). Mutationanalysis of genetic diseases by asymmetric-PCR SSCP and ethidium bromidestaining: application to neurofibromatosis and cystic fibrosis. Mol Cell Probes, 6(5): 357–359. doi:10.1016/0890‐8508(92)90027‐U
11. Lilleberg S L (2003). In-depth mutation and SNP discovery using DHPLC genescanning. Curr Opin Drug Diseov Devel, 6(2): 237–252
12. Makino R, Kaneko K, Kurahashi T, Matsumura T, Mitamura K (2000). Detectionof mutation of the p53 gene withhigh sensitivity by fluorescence-based PCR-SSCP analysis using low-pHbuffer and an automated DNA sequencer in a large number of DNA samples. Mutation Research, 452(1): 83–90
13. Nishimura A, Tsuhako M (2000). Singlestrand conformation polymorphism analysis of ras oncogene by capillaryelectrophoresis with laser-induced fluorescence detector. Chem Pharm Bull, 48(6): 774–778
14. Ribas G, Neville M J, Campbell R D (2001). Single-nucleotide polymorphism detectionby denaturing high-performance liquid chromatography and direct sequencingin genes in the MHC class III region encoding novel cell surface molecules. Immunogenetics, 53(5): 369–381. doi:10.1007/s002510100343
15. Vernet G, Tran N (2005). The DNA-Chiptechnology as a new molecular tool for the detection of HBV mutants. Clin Virol, 34(1): 49–53. doi:10.1016/S1386‐6532(05)80010‐1