Cloning and sequence analysis of a mutation-type cinnamate 4-hydroxylase gene from L. var. DC.

CHEN Anhe1, LI Jiana2, CHAI Yourong2, WANG Rui2, LU Jun2

PDF(721 KB)
PDF(721 KB)
Front. Agric. China ›› 2008, Vol. 2 ›› Issue (4) : 456-462. DOI: 10.1007/s11703-008-0047-x

Cloning and sequence analysis of a mutation-type cinnamate 4-hydroxylase gene from L. var. DC.

  • CHEN Anhe1, LI Jiana2, CHAI Yourong2, WANG Rui2, LU Jun2
Author information +
History +

Abstract

A 2431-bp full-length cinnamate 4-hydroxylase gene, BoC4H, was cloned from Brassica oleracea L. var. acephala DC.. It contains 2 introns. Its mRNA is 1715 bp, encoding a deduced 481-amino-acid polypeptide with wide homologies to C4Hs from other plants. It possesses cytochrome P450 conserved domains and motifs such as the haem-iron binding motif, the E-R-R triad, the T-containing binding pocket motif and the hinge motif necessary for optimal orientation of the enzyme. It also has most of the canonical C4H/CYP73A5-featured substrate-recognition sites (SRSs) and active site residues. However, owing to a single-base deletion at C2242 and subsequent frame shift within the 3′ coding region as compared with C4H genes from Arabidopsis thaliana and other plants, BoC4H shows a 36-aa deletion/variation at its C-terminus and the SRS6 motif together with active site residues therein are absent. Thus BoC4H may be of no function or low activity. BoC4H is a membrane protein and is probably associated with the endoplasmic reticulum. Its secondary structure is dominated by alpha helices and random coils. The Swiss-Model could not predict its tertiary structure. B. oleracea contains a C4H gene family with at least 5 members.

Cite this article

Download citation ▾
CHEN Anhe, LI Jiana, CHAI Yourong, WANG Rui, LU Jun. Cloning and sequence analysis of a mutation-type cinnamate 4-hydroxylase gene from L. var. DC.. Front. Agric. China, 2008, 2(4): 456‒462 https://doi.org/10.1007/s11703-008-0047-x

References

1. Barber M S, Mitchell H J (1997). Regulationof phenylpropanoid metabolism in relation to lignin biosynthesis inplants. Int Rev Cytol, 172: 243–293. doi:10.1016/S0074-7696(08)62362-1
2. Bendtsen J D, Nielsen H, von Heijne G, Brunak S (2004). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol, 340: 783–795. doi:10.1016/j.jmb.2004.05.028
3. Blee K, Choi J W, O'Connell A P, Jupe S C, Schuch W, Lewis N G, Bolwell G P (2001). Antisenseand sense expression of cDNA coding for CYP73A15, a class II cinnamate4-hydroxylase, leads to a delayed and reduced production of ligninin tobacco. Phytochemistry, 57: 1159–1166. doi:10.1016/S0031-9422(01)00150-9
4. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004). Predictionof post-translational glycosylation and phosphorylation of proteinsfrom the amino acid sequence. Proteomics, 4: 1633–1649. doi:10.1002/pmic.200300771
5. Fourmann M, Barret P, Froger N, Baron C, Charlot F, Delourme R, Brunel D (2002). From Arabidopsis thaliana to Brassica napus: development of amplified consensus geneticmarkers (ACGM) for construction of a gene map. Theor Appl Genet, 105: 1196–1206. doi:10.1007/s00122-002-1040-z
6. Harakava R (2005). Genes encoding enzymes of the lignin biosynthesis pathwayin Eucalyptus. Genet Mol Biol, 28(Suppl3): 601–607
7. Hasemann C A, Kurumbail R G, Boddupalli S S, Peterson J A, Deisenhofer J (1995). Structureand function of cytochromes P450: a comparative analysis of threecrystal structures. Structure, 3: 41–62. doi:10.1016/S0969-2126(01)00134-4
8. Hofmann K, Stoffel W (1993). TMbase:A database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler, 374: 166
9. Li B, Liang Y, Chai Y R (2006). Achievements in research on plantcinnamoyl-CoA reductase (CCR) genes. Mol Plant Breed, 4(Suppl3): 55–65 (in Chinese)
10. Marchler-Bauer A, Bryant S H (2004). CD-Search:protein domain annotations on the fly. Nucleic Acids Res, 32: W327–W331. doi:10.1093/nar/gkh454
11. Rechards E J (1995). Preparation and analysis of DNA. In: Short Protocols in Molecular Biology. Ausubel F M, Brent R, Kingston R E, MooreD D, Seidman J G, Smith J A, Struhl K, eds. New York: John Wiley and Sons
12. Rupasinghe S, Baudry J, Schuler M A (2003). Common active site architecture andbinding strategy of four phenylpropanoid P450s from Arabidopsis thaliana as revealed by molecularmodeling. Protein Eng, 16: 721–731. doi:10.1093/protein/gzg094
13. Schoch G A, Attias R, Le Ret M, Werck-Reichhart D (2003). Key substrate recognition residues in the active siteof a plant cytochrome P450, CYP73A1. Homology guided site-directedmutagenesis. Eur J Biochem, 270: 3684–3695. doi:10.1046/j.1432-1033.2003.03739.x
14. Seidman C E, Struhl K, Sheen J (1995). Escherichiacoli, plasmids, and bacteriophages. In: Short Protocols in Molecular Biology. Ausubel F M, Brent R, Kingston R E, MooreD D, Seidman J G, Smith J A, Struhl K, eds. New York: John Wiley and Sons
15. Sewalt V J H, Ni W, Blount J W, Jung H G, Masoud S A, Howles P A, Lamb C, Dixon R A (1997). Reduced lignin content and alteredlignin composition in transgenic tobacco down-regulated in expressionof L-phenylalanine ammonialyase or cinnamate 4-hydroxylase. Plant Physiol, 115: 41–50
16. Tusnády G E, Simon I (2001). The HMMTOPtransmembrane topology prediction server. Bioinformatics, 17: 849–850. doi:10.1093/bioinformatics/17.9.849
17. Winkel-Shirley B (2001). Flavonoid biosynthesis. A colorful model for genetics,biochemistry, cell biology, and biotechnology. Plant Physiol, 126: 485–493. doi:10.1104/pp.126.2.485
PDF(721 KB)

Accesses

Citations

Detail

Sections
Recommended

/