PDF
Abstract
Neuroaging is a complex biological process in which the brain undergoes progressive functional decline marked by synaptic loss, neuroinflammation, and cognitive decline. At the molecular and cellular level, aging is driven by multiple interconnected hallmarks, including genomic instability, telomere attrition, epigenetic alterations, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. Among these, cellular senescence, a state of irreversible cell cycle arrest, has emerged as a critical contributor to brain aging. Senescent cells accumulate with age, driven by the p53-p21 and p16-pRb pathways, and secrete pro-inflammatory factors via senescence-associated secretory phenotype (SASP), thereby exacerbating neurodegeneration, vascular dysfunction, and cognitive decline. Extracellular vesicles (EVs) are natural nanocarriers of proteins, lipids, and nucleic acids, and have emerged as key mediators of intercellular communication and therapeutics for aging and age-related conditions. EVs derived from various cell types, such as mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs), can modulate senescence-related pathways, reduce inflammation, and promote tissue repair. Preclinical studies demonstrate that stem-cell-derived EVs can improve cognitive performance, enhance neurogenesis, reduce senescence phenotype, improve neuronal survival through neuroprotective miRNAs (miR-181a-2-3p), suppress neuroinflammation via inhibition of NLRP3 inflammasome, and support synaptic plasticity. Stem cell EVs possess natural biocompatibility, the ability to cross the blood-brain barrier (BBB), and targeted delivery mechanisms, making them promising candidates for anti-aging interventions. This review elaborates on the multifaceted role of stem cell EVs in mitigating brain aging, senescence, and age-associated chronic disease phenotype.
Keywords
Brain aging
/
neurodegeneration
/
extracellular vesicles
/
stem cell therapy
Cite this article
Download citation ▾
Mohit Kumar, Sudipta Ray, Susmita Sil.
Stem-cell-derived extracellular vesicles in neurodegeneration and neuroaging: therapeutic potential and challenges.
Extracellular Vesicles and Circulating Nucleic Acids, 2025, 6(3): 594-608 DOI:10.20517/evcna.2025.65
| [1] |
Tenchov R,Wang X.Aging hallmarks and progression and age-related diseases: a landscape view of research advancement.ACS Chem Neurosci2024;15:1-30 PMCID:PMC10767750
|
| [2] |
Li Y,Luo J,Wang S.Molecular mechanisms of aging and anti-aging strategies.Cell Commun Signal2024;22:285 PMCID:PMC11118732
|
| [3] |
Chakravarti D,DePinho RA.Telomeres: history, health, and hallmarks of aging.Cell2021;184:306-22 PMCID:PMC8081271
|
| [4] |
Rossiello F,Passos JF.Telomere dysfunction in ageing and age-related diseases.Nat Cell Biol2022;24:135-47 PMCID:PMC8985209
|
| [5] |
Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities.Nat Rev Mol Cell Biol2021;22:75-95 PMCID:PMC8344376
|
| [6] |
Lima T,Mottis A.Pleiotropic effects of mitochondria in aging.Nat Aging2022;2:199-213
|
| [7] |
Wang K,Hu Q.Epigenetic regulation of aging: implications for interventions of aging and diseases.Signal Transduct Target Ther2022;7:374 PMCID:PMC9637765
|
| [8] |
Li Y,Cao X.A newly synthesized rhamnoside derivative alleviates alzheimer’s amyloid-β-induced oxidative stress, mitochondrial dysfunction, and cell senescence through upregulating SIRT3.Oxid Med Cell Longev2020;2020:7698560 PMCID:PMC7040408
|
| [9] |
Choo KB,Hymavathee KS.Oxidative stress-induced premature senescence in Wharton’s jelly-derived mesenchymal stem cells.Int J Med Sci2014;11:1201-7 PMCID:PMC4166865
|
| [10] |
Dasgupta N,Equey A,Adams PD.The role of the dynamic epigenetic landscape in senescence: orchestrating SASP expression.NPJ Aging2024;10:48 PMCID:PMC11502686
|
| [11] |
Martínez-Zamudio RI,Nabuco Leva Ferreira Freitas JA.Escape from oncogene-induced senescence is controlled by POU2F2 and memorized by chromatin scars.Cell Genom2023;3:100293 PMCID:PMC10112333
|
| [12] |
González-Gualda E,Fruk L.A guide to assessing cellular senescence in vitro and in vivo.FEBS J2021;288:56-80
|
| [13] |
Tuttle CSL,Slee-Valentijn MS,Westendorp R.Cellular senescence and chronological age in various human tissues: a systematic review and meta-analysis.Aging Cell2020;19:e13083 PMCID:PMC6996941
|
| [14] |
Ajoolabady A,Bahijri S.Hallmarks and mechanisms of cellular senescence in aging and disease.Cell Death Discov2025;11:364 PMCID:PMC12322153
|
| [15] |
Keshavjee B,Coppola H.Stress-induced premature senescence related to oxidative stress in the developmental programming of nonalcoholic fatty liver disease in a rat model of intrauterine growth restriction.Antioxidants2022;11:1695 PMCID:PMC9495674
|
| [16] |
Larsson LG.Oncogene- and tumor suppressor gene-mediated suppression of cellular senescence.Semin Cancer Biol2011;21:367-76
|
| [17] |
Luo J,Liu Z.Persistent accumulation of therapy-induced senescent cells: an obstacle to long-term cancer treatment efficacy.Int J Oral Sci2025;17:59 PMCID:PMC12317027
|
| [18] |
Saleh T,Carpenter VJ.Therapy-induced senescence: an “old” friend becomes the enemy.Cancers2020;12:822 PMCID:PMC7226427
|
| [19] |
Dehkordi SK,Sah E.Profiling senescent cells in human brains reveals neurons with CDKN2D/p19 and tau neuropathology.Nat Aging2021;1:1107-16 PMCID:PMC9075501
|
| [20] |
Herdy JR,Gage FH.Neuronal senescence may drive brain aging.Science2024;384:1404-6 PMCID:PMC11737875
|
| [21] |
Valentijn FA,Nguyen TQ.Cellular senescence in the aging and diseased kidney.J Cell Commun Signal2018;12:69-82 PMCID:PMC5842195
|
| [22] |
Salerno N,Scalise M.Pharmacological clearance of senescent cells improves cardiac remodeling and function after myocardial infarction in female aged mice.Mech Ageing Dev2022;208:111740
|
| [23] |
Li Z,Ren Y.Aging and age-related diseases: from mechanisms to therapeutic strategies.Biogerontology2021;22:165-87 PMCID:PMC7838467
|
| [24] |
Niccoli T.Ageing as a risk factor for disease.Curr Biol2012;22:R741-52
|
| [25] |
Yang Z,Erus G.Brain aging patterns in a large and diverse cohort of 49,482 individuals.Nat Med2024;30:3015-26 PMCID:PMC11483219
|
| [26] |
Ho NCW, Bethlehem RAI, Seidlitz J, et al; Lifespan Brain Chart Consortium. Atypical brain aging and its association with working memory performance in major depressive disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2024;9:786-99.
|
| [27] |
Antoniades M,Wen J.Relationship between MRI brain-age heterogeneity, cognition, genetics and Alzheimer’s disease neuropathology.EBioMedicine2024;109:105399 PMCID:PMC11536027
|
| [28] |
Ya J.Senolytics and senomorphics targeting p38MAPK/NF-κB pathway protect endothelial cells from oxidative stress-mediated premature senescence.Cells2024;13:1292 PMCID:PMC11311971
|
| [29] |
Rezagholizadeh N,Hasler WA.SLC38A9 is directly involved in Tat-induced endolysosome dysfunction and senescence in astrocytes.Life Sci Alliance2025;8:e202503231 PMCID:PMC12053450
|
| [30] |
Gross PS,Ho LT.Senescent-like microglia limit remyelination through the senescence associated secretory phenotype.Nat Commun2025;16:2283 PMCID:PMC11889183
|
| [31] |
Luo N,Li X.Defective autophagy of pericytes enhances radiation-induced senescence promoting radiation brain injury.Neuro Oncol2024;26:2288-304 PMCID:PMC11630511
|
| [32] |
Budamagunta V,Rani A.Effect of peripheral cellular senescence on brain aging and cognitive decline.Aging Cell2023;22:e13817 PMCID:PMC10186609
|
| [33] |
Zhang W,Wang X,Liu Q.Cellular senescence, DNA damage, and neuroinflammation in the aging brain.Trends Neurosci2024;47:461-74
|
| [34] |
Cuanalo-Contreras K,Mukherjee A,Armijo E.Extensive accumulation of misfolded protein aggregates during natural aging and senescence.Front Aging Neurosci2022;14:1090109 PMCID:PMC9909609
|
| [35] |
Herdy JR,Agarwal RK.Increased post-mitotic senescence in aged human neurons is a pathological feature of Alzheimer’s disease.Cell Stem Cell2022;29:1637-52.e6 PMCID:PMC10093780
|
| [36] |
Jiang SY,Yao H.The cGAS-STING-YY1 axis accelerates progression of neurodegeneration in a mouse model of Parkinson’s disease via LCN2-dependent astrocyte senescence.Cell Death Differ2023;30:2280-92 PMCID:PMC10589362
|
| [37] |
Jurk D,Miwa S.Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response.Aging Cell2012;11:996-1004 PMCID:PMC3533793
|
| [38] |
Donovan LJ, Brewer CL, Bond SF, et al. Aging and injury drive neuronal senescence in the dorsal root ganglia. bioRxiv 2024; bioRxiv:2024.01.20.576299.2024.01.20.576299 PMCID:PMC11741248
|
| [39] |
Choi I,Yoo S.Autophagy enables microglia to engage amyloid plaques and prevents microglial senescence.Nat Cell Biol2023;25:963-74 PMCID:PMC10950302
|
| [40] |
Du T,Zong Q,Pan Y.Nuclear alpha-synuclein accelerates cell senescence and neurodegeneration.Immun Ageing2024;21:47 PMCID:PMC11242018
|
| [41] |
Chemparathy DT,Ochs C.Neuropathogenic role of astrocyte-derived extracellular vesicles in HIV-associated neurocognitive disorders.J Extracell Vesicles2024;13:e12439 PMCID:PMC11034007
|
| [42] |
van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles.Pharmacol Rev2012;64:676-705
|
| [43] |
Doyle LM.Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis.Cells2019;8:727 PMCID:PMC6678302
|
| [44] |
Odegaard KE,Wheeler S.Role of extracellular vesicles in substance abuse and HIV-related neurological pathologies.Int J Mol Sci2020;21:6765 PMCID:PMC7554956
|
| [45] |
Scuteri A.Dual role of extracellular vesicles in neurodegenerative diseases.World J Stem Cells2024;16:1002-11 PMCID:PMC11669982
|
| [46] |
Schnatz A,Brahmer A.Extracellular vesicles in neural cell interaction and CNS homeostasis.FASEB Bioadv2021;3:577-92 PMCID:PMC8332475
|
| [47] |
Wallis R,Bishop CL.The bright and dark side of extracellular vesicles in the senescence-associated secretory phenotype.Mech Ageing Dev2020;189:111263 PMCID:PMC7347005
|
| [48] |
Guix FX,Casadomé-Perales Á.Increased exosome secretion in neurons aging in vitro by NPC1-mediated endosomal cholesterol buildup.Life Sci Alliance2021;4:e202101055 PMCID:PMC8321659
|
| [49] |
Soukup J,Kereïche S.Large extracellular vesicles transfer more prions and infect cell culture better than small extracellular vesicles.Biochem Biophys Res Commun2023;687:149208
|
| [50] |
Jeon I,Cisbani G.Human-to-mouse prion-like propagation of mutant huntingtin protein.Acta Neuropathol2016;132:577-92 PMCID:PMC5023734
|
| [51] |
Neueder A,Wagner R.Huntington disease alters the actionable information in plasma extracellular vesicles.Clin Transl Med2024;14:e1525 PMCID:PMC10775183
|
| [52] |
You B,Zhou Z.Extracellular vesicles: a new frontier for cardiac repair.Pharmaceutics2022;14:1848 PMCID:PMC9503573
|
| [53] |
Boyer E,Dourte M.Comparison of plasma soluble and extracellular vesicles-associated biomarkers in Alzheimer’s disease patients and cognitively normal individuals.Alzheimers Res Ther2024;16:141
|
| [54] |
Fowler SL,Turkes E.Tau filaments are tethered within brain extracellular vesicles in Alzheimer’s disease.Nat Neurosci2025;28:40-8 PMCID:PMC10168373
|
| [55] |
Sattarov R,Orbjörn C.Phosphorylated tau in cerebrospinal fluid-derived extracellular vesicles in Alzheimer’s disease: a pilot study.Sci Rep2024;14:25419 PMCID:PMC11511998
|
| [56] |
Gilboa T,Wang SC.Measurement of α-synuclein as protein cargo in plasma extracellular vesicles.Proc Natl Acad Sci U S A2024;121:e2408949121 PMCID:PMC11551346
|
| [57] |
Chatterjee M,Fritz C.Plasma extracellular vesicle tau and TDP-43 as diagnostic biomarkers in FTD and ALS.Nat Med2024;30:1771-83 PMCID:PMC11186765
|
| [58] |
Rufino-Ramos D,Leandro K.Extracellular vesicle-based delivery of silencing sequences for the treatment of Machado-Joseph disease/spinocerebellar ataxia type 3.Mol Ther2023;31:1275-92 PMCID:PMC10188911
|
| [59] |
Xiao X,Yu H.Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src.Signal Transduct Target Ther2021;6:354 PMCID:PMC8531331
|
| [60] |
Mas-Bargues C,Román-Domínguez A.Extracellular vesicles from healthy cells improves cell function and stemness in premature senescent stem cells by miR-302b and HIF-1α activation.Biomolecules2020;10:957 PMCID:PMC7357081
|
| [61] |
Larrow DR.Endoscopic approach for tympanostomy tube insertion in patients with trisomy 21.Otol Neurotol2025;46:e206
|
| [62] |
Dave KM,Rao KS.Mitochondria-containing extracellular vesicles from mouse vs. human brain endothelial cells for ischemic stroke therapy.J Control Release2024;373:803-22
|
| [63] |
Liu J,He L.Induced mesenchymal stem cells-small extracellular vesicles alleviate post-stroke cognitive impairment by rejuvenating senescence of neural stem cells.J Mol Neurosci2024;74:29
|
| [64] |
Yu L,Liu C.Embryonic stem cell-derived extracellular vesicles rejuvenate senescent cells and antagonize aging in mice.Bioact Mater2023;29:85-97 PMCID:PMC10336196
|
| [65] |
Chun C,Kim H.Astrocyte-derived extracellular vesicles enhance the survival and electrophysiological function of human cortical neurons in vitro.Biomaterials2021;271:120700 PMCID:PMC8044026
|
| [66] |
Zhang X,Hou X.Exosomes secreted by mesenchymal stem cells delay brain aging by upregulating SIRT1 expression.Sci Rep2023;13:13213 PMCID:PMC10425430
|
| [67] |
Li Q,Yi Y.Inducible pluripotent stem cell-derived small extracellular vesicles rejuvenate senescent blood-brain barrier to protect against ischemic stroke in aged mice.ACS Nano2023;17:775-89
|
| [68] |
Peters R.Ageing and the brain.Postgrad Med J2006;82:84-8 PMCID:PMC2596698
|
| [69] |
Head D,Kennedy KM.Neuroanatomical and cognitive mediators of age-related differences in episodic memory.Neuropsychology2008;22:491-507 PMCID:PMC2688704
|
| [70] |
Mungas D,Reed BR.Longitudinal volumetric MRI change and rate of cognitive decline.Neurology2005;65:565-71 PMCID:PMC1820871
|
| [71] |
Fjell AM.Structural brain changes in aging: courses, causes and cognitive consequences.Rev Neurosci2010;21:187-221
|
| [72] |
Rajah MN,Han JE.Group differences in anterior hippocampal volume and in the retrieval of spatial and temporal context memory in healthy young versus older adults.Neuropsychologia2010;48:4020-30
|
| [73] |
Bethlehem RAI, Seidlitz J, White SR, et al; 3R-BRAIN, AIBL, Alzheimer’s Disease Neuroimaging Initiative, Alzheimer’s Disease Repository Without Borders Investigators, CALM Team, Cam-CAN, CCNP, COBRE, cVEDA, ENIGMA Developmental Brain Age Working Group, Developing Human Connectome Project, FinnBrain, Harvard Aging Brain Study, IMAGEN, KNE96, Mayo Clinic Study of Aging, NSPN, POND, PREVENT-AD Research Group, VETSA. Brain charts for the human lifespan. Nature. 2022;604:525-33. PMCID:PMC10312450
|
| [74] |
Bennett IJ.Disconnected aging: cerebral white matter integrity and age-related differences in cognition.Neuroscience2014;276:187-205 PMCID:PMC4032380
|
| [75] |
Hao Y,Qin M.Extracellular vesicles from antler blastema progenitor cells reverse bone loss and mitigate aging-related phenotypes in mice and macaques.Nat Aging2025;5:1790-809 PMCID:PMC12443635
|
| [76] |
Chen Q,Sawada T,Wu S.Possible role of EphA4 and VEGFR2 interactions in neural stem and progenitor cell differentiation.Exp Ther Med2020;19:1789-96 PMCID:PMC7027147
|
| [77] |
Yokote H,Jing X.Trans-activation of EphA4 and FGF receptors mediated by direct interactions between their cytoplasmic domains.Proc Natl Acad Sci U S A2005;102:18866-71 PMCID:PMC1323220
|
| [78] |
Ghosh S,Mukherjee N.EphA4 targeting peptide-conjugated extracellular vesicles rejuvenates adult neural stem cells and exerts therapeutic benefits in aging rats.ACS Chem Neurosci2024;15:3482-95
|
| [79] |
Jankovic V,Boccuni P,Benezra R.Id1 restrains myeloid commitment, maintaining the self-renewal capacity of hematopoietic stem cells.Proc Natl Acad Sci U S A2007;104:1260-5 PMCID:PMC1783103
|
| [80] |
Harischandra DS,Ghaisas S.Enhanced differentiation of human dopaminergic neuronal cell model for preclinical translational research in Parkinson’s disease.Biochim Biophys Acta Mol Basis Dis2020;1866:165533 PMCID:PMC7010568
|
| [81] |
Lee S,Ahn H,Choe J.TuJ1 (class III beta-tubulin) expression suggests dynamic redistribution of follicular dendritic cells in lymphoid tissue.Eur J Cell Biol2005;84:453-9
|
| [82] |
Park D,Mao FF.Nestin is required for the proper self-renewal of neural stem cells.Stem Cells2010;28:2162-71
|
| [83] |
Winship IR.Remapping the somatosensory cortex after stroke: insight from imaging the synapse to network.Neuroscientist2009;15:507-24
|
| [84] |
Singh AD,Swathi BH,Godbole A.Age-related cortical changes and cognitive performance in healthy adults.Brain Cogn2025;187:106306
|
| [85] |
Floel A.Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke.Neurobiol Dis2010;37:243-51 PMCID:PMC4886709
|
| [86] |
Festa LK,Jordan-Sciutto KL.White matter injury across neurodegenerative disease.Trends Neurosci2024;47:47-57 PMCID:PMC10842057
|
| [87] |
Zhou Y,Mojica CA.Mesenchymal-derived extracellular vesicles enhance microglia-mediated synapse remodeling after cortical injury in aging Rhesus monkeys.J Neuroinflammation2023;20:201 PMCID:PMC10475204
|
| [88] |
Fraser DA,Tenner AJ.C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production.J Neurochem2010;112:733-43 PMCID:PMC2809134
|
| [89] |
Go V,Zhou Y.Extracellular vesicles derived from bone marrow mesenchymal stem cells enhance myelin maintenance after cortical injury in aged rhesus monkeys.Exp Neurol2021;337:113540 PMCID:PMC7946396
|
| [90] |
Medalla M,Calderazzo SM.Treatment with mesenchymal-derived extracellular vesicles reduces injury-related pathology in pyramidal neurons of monkey perilesional ventral premotor cortex.J Neurosci2020;40:3385-407 PMCID:PMC7178914
|
| [91] |
Go V,Pessina MA.Extracellular vesicles from mesenchymal stem cells reduce microglial-mediated neuroinflammation after cortical injury in aged Rhesus monkeys.Geroscience2020;42:1-17 PMCID:PMC7031476
|
| [92] |
Chang J,Shan X.Neural stem cells promote neuroplasticity: a promising therapeutic strategy for the treatment of Alzheimer’s disease.Neural Regen Res2024;19:619-28 PMCID:PMC10581561
|
| [93] |
Niu X,Luo L.iPSC-sEVs alleviate microglia senescence to protect against ischemic stroke in aged mice.Mater Today Bio2023;19:100600 PMCID:PMC10020681
|
| [94] |
Kodali M,Reger RL.A single intranasal dose of human mesenchymal stem cell-derived extracellular vesicles after traumatic brain injury eases neurogenesis decline, synapse loss, and BDNF-ERK-CREB signaling.Front Mol Neurosci2023;16:1185883 PMCID:PMC10239975
|
| [95] |
Lee Y,Kim J.hESC-derived extracellular vesicles enriched with MFGE-8 and the GSH redox system act as senotherapeutics for neural stem cells in ischemic stroke.Free Radic Biol Med2025;229:333-49
|
| [96] |
Natale F,Rinaudo M.Neural stem cell-derived extracellular vesicles counteract insulin resistance-induced senescence of neurogenic niche.Stem Cells2022;40:318-31
|
| [97] |
Rao S,Babu RS.Extracellular vesicles from hiPSC-derived NSCs protect human neurons against Aβ-42 oligomers induced neurodegeneration, mitochondrial dysfunction and tau phosphorylation.Stem Cell Res Ther2025;16:191 PMCID:PMC12008877
|
| [98] |
Deng S,Xie B.Cell-based regenerative and rejuvenation strategies for treating neurodegenerative diseases.Stem Cell Res Ther2025;16:167 PMCID:PMC11974143
|
| [99] |
Hu G,Chen B.ESC-sEVs rejuvenate aging hippocampal NSCs by transferring SMADs to regulate the MYT1-Egln3-Sirt1 axis.Mol Ther2021;29:103-20 PMCID:PMC7791087
|
| [100] |
Sahay A,Hill AS.Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation.Nature2011;472:466-70 PMCID:PMC3084370
|
| [101] |
Babcock KR,Fallon JR.Adult hippocampal neurogenesis in aging and Alzheimer’s disease.Stem Cell Reports2021;16:681-93 PMCID:PMC8072031
|
| [102] |
Wang SN,Li WL.Targeting nicotinamide phosphoribosyltransferase as a potential therapeutic strategy to restore adult neurogenesis.CNS Neurosci Ther2016;22:431-9 PMCID:PMC6492912
|
| [103] |
Leu T,Schreiber T.(H)IF applicable: promotion of neurogenesis by induced HIF-2 signalling after ischaemia.Pflugers Arch2021;473:1287-99 PMCID:PMC8302505
|
| [104] |
Mormone E,Abate L.Sirtuins and redox signaling interplay in neurogenesis, neurodegenerative diseases, and neural cell reprogramming.Front Neurosci2023;17:1073689 PMCID:PMC9929468
|
| [105] |
Oh H,Yang S.Reciprocal regulation by hypoxia-inducible factor-2α and the NAMPT-NAD+-SIRT axis in articular chondrocytes is involved in osteoarthritis.Osteoarthritis Cartilage2015;23:2288-96
|
| [106] |
Guo J,Dou L.Aging and aging-related diseases: from molecular mechanisms to interventions and treatments.Signal Transduct Target Ther2022;7:391 PMCID:PMC9755275
|
| [107] |
Liu Y,Zhang Z,Zhu L.The interaction between ageing and Alzheimer’s disease: insights from the hallmarks of ageing.Transl Neurodegener2024;13:7 PMCID:PMC10804662
|
| [108] |
Kinney JW,Murtishaw AS,Salazar AM.Inflammation as a central mechanism in Alzheimer’s disease.Alzheimers Dement2018;4:575-90 PMCID:PMC6214864
|
| [109] |
Pajares M,Manda G,Cuadrado A.Inflammation in Parkinson’s disease: mechanisms and therapeutic implications.Cells2020;9:1687 PMCID:PMC7408280
|
| [110] |
Aarsland D,Halliday GM.Parkinson disease-associated cognitive impairment.Nat Rev Dis Primers2021;7:47
|
| [111] |
Testo AA,Dumas JA.Cognitive decline in Alzheimer’s disease.Curr Top Behav Neurosci2025;69:181-95
|
| [112] |
Yeapuri P,Foster EG.Amyloid precursor protein and presenilin-1 knock-in immunodeficient mice exhibit intraneuronal Aβ pathology, microgliosis, and extensive neuronal loss.Alzheimers Dement2025;21:e70084 PMCID:PMC11975631
|
| [113] |
Safiri S,Fazlollahi A.Alzheimer’s disease: a comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges.Front Med2024;11:1474043 PMCID:PMC11682909
|
| [114] |
Musi N,Sickora KR.Tau protein aggregation is associated with cellular senescence in the brain.Aging Cell2018;17:e12840 PMCID:PMC6260915
|
| [115] |
Liu RM.Aging, cellular senescence, and Alzheimer’s disease.Int J Mol Sci2022;23:1989 PMCID:PMC8874507
|
| [116] |
Koh SH,Jeong JH.Telomere shortening reflecting physical aging is associated with cognitive decline and dementia conversion in mild cognitive impairment due to Alzheimer’s disease.Aging2020;12:4407-23 PMCID:PMC7093181
|
| [117] |
Zhang P,Grammatikakis I.Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model.Nat Neurosci2019;22:719-28 PMCID:PMC6605052
|
| [118] |
Gonzales MM,Marques Zilli E.Senolytic therapy to modulate the progression of Alzheimer’s disease (SToMP-AD): a pilot clinical trial.J Prev Alzheimers Dis2022;9:22-9 PMCID:PMC8612719
|
| [119] |
Bussian TJ,Meyer CF,van Deursen JM.Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline.Nature2018;562:578-82 PMCID:PMC6206507
|
| [120] |
Ogrodnik M,Fielder E.Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice.Aging Cell2021;20:e13296 PMCID:PMC7884042
|
| [121] |
Xu F,Yang Q.Engineered extracellular vesicles with SHP2 high expression promote mitophagy for Alzheimer’s disease treatment.Adv Mater2022;34:e2207107
|
| [122] |
Gao G,Ma Y.Neural stem cell-derived extracellular vesicles mitigate Alzheimer’s disease-like phenotypes in a preclinical mouse model.Signal Transduct Target Ther2023;8:228 PMCID:PMC10264449
|
| [123] |
Apodaca LA,Garcia C Jr.Human neural stem cell-derived extracellular vesicles mitigate hallmarks of Alzheimer’s disease.Alzheimers Res Ther2021;13:57 PMCID:PMC7937214
|
| [124] |
Madhu LN,Upadhya R.Extracellular vesicles from human-induced pluripotent stem cell-derived neural stem cells alleviate proinflammatory cascades within disease-associated microglia in Alzheimer’s disease.J Extracell Vesicles2024;13:e12519 PMCID:PMC11536387
|
| [125] |
Morris HR,Sue CM.The pathogenesis of Parkinson’s disease.Lancet2024;403:293-304
|
| [126] |
Krawczuk D,Mroczko J,Mroczko B.The role of α-synuclein in etiology of neurodegenerative diseases.Int J Mol Sci2024;25:9197 PMCID:PMC11395629
|
| [127] |
Pereira SL,Delcambre S,Grünewald A.Novel insights into Parkin-mediated mitochondrial dysfunction and neuroinflammation in Parkinson’s disease.Curr Opin Neurobiol2023;80:102720
|
| [128] |
Björkblom B,Maple-Grødem J.Parkinson disease protein DJ-1 binds metals and protects against metal-induced cytotoxicity.J Biol Chem2013;288:22809-20 PMCID:PMC3829365
|
| [129] |
Liu Y,Zhu X.MicroRNA-181a regulates apoptosis and autophagy process in Parkinson’s disease by inhibiting p38 Mitogen-Activated Protein Kinase (MAPK)/c-Jun N-Terminal Kinases (JNK) Signaling Pathways.Med Sci Monit2017;23:1597-606 PMCID:PMC5386441
|
| [130] |
Ding H,Chen M.Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease.Parkinsonism Relat Disord2016;22:68-73
|
| [131] |
Ma J,Li M.MicroRNA-181a-2-3p shuttled by mesenchymal stem cell-secreted extracellular vesicles inhibits oxidative stress in Parkinson’s disease by inhibiting EGR1 and NOX4.Cell Death Discov2022;8:33 PMCID:PMC8786891
|
| [132] |
Chen HX,Gu P.Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy.Cell Death Dis2020;11:288 PMCID:PMC7184757
|
| [133] |
Ramalingam M,Hwang J,Kim BC.Neural-induced human adipose tissue-derived stem cell secretome exerts neuroprotection against rotenone-induced Parkinson’s disease in rats.Stem Cell Res Ther2025;16:193 PMCID:PMC12010609
|
| [134] |
Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles.Nat Rev Mol Cell Biol2018;19:213-28
|
| [135] |
Chen R,Shufesky WJ.Transplants foster B cell alloimmunity by relaying extracellular vesicles to follicular dendritic cells.Cell Rep2025;44:115832 PMCID:PMC12281710
|
| [136] |
Yáñez-Mó M,Andreu Z.Biological properties of extracellular vesicles and their physiological functions.J Extracell Vesicles2015;4:27066 PMCID:PMC4433489
|
| [137] |
Kalluri R.The biology, function, and biomedical applications of exosomes.Science2020;367:eaau6977 PMCID:PMC7717626
|
| [138] |
Ding L,Ren Y.Construction of [89Zr]Zr-labeled human umbilical cord mesenchymal stem cell-derived extracellular vesicles for noninvasive detection of tumors.ACS Appl Mater Interfaces2025;17:30589-99
|
| [139] |
Chung YH,Farn SS.In vivo SPECT imaging of Tc-99m radiolabeled exosomes from human umbilical-cord derived mesenchymal stem cells in small animals.Biomed J2024;47:100721 PMCID:PMC11401219
|
| [140] |
Elsharkasy OM,Hagey DW.Extracellular vesicles as drug delivery systems: why and how?.Adv Drug Deliv Rev2020;159:332-43
|
| [141] |
Walker S,Pham A.Extracellular vesicle-based drug delivery systems for cancer treatment.Theranostics2019;9:8001-17 PMCID:PMC6857056
|
| [142] |
Barilani M,Manzini P.Extracellular vesicles from human induced pluripotent stem cells exhibit a unique microRNA and circRNA signature.Int J Biol Sci2024;20:6255-78 PMCID:PMC11628337
|
| [143] |
Théry C,Aikawa E.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.J Extracell Vesicles2018;7:1535750 PMCID:PMC6322352
|
| [144] |
Sivanantham A.Impact of storage conditions on EV integrity/surface markers and cargos.Life2022;12:697 PMCID:PMC9146501
|