Extracellular vesicles as vehicles for small non-coding RNA therapeutics: standardization challenges for clinical translation

Lucrezia Luisotti , Lorenzo Germelli , Rebecca Piccarducci , Chiara Giacomelli , Laura Marchetti , Claudia Martini

Extracellular Vesicles and Circulating Nucleic Acids ›› 2025, Vol. 6 ›› Issue (3) : 398 -427.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2025, Vol. 6 ›› Issue (3) :398 -427. DOI: 10.20517/evcna.2025.33
review-article

Extracellular vesicles as vehicles for small non-coding RNA therapeutics: standardization challenges for clinical translation

Author information +
History +
PDF

Abstract

Aim: Extracellular vesicles (EVs) have emerged as promising vehicles for the delivery of small non-coding RNAs (sncRNAs); however, their clinical translation is hindered by the lack of standardized manufacturing methods, RNA loading protocols, and dosing strategies in both preclinical and clinical settings. This review aims to analyze the current landscape of EV-based RNA therapeutics to identify key trends and discrepancies, providing insight for the clinical development of future sncRNA-loaded EVs.

Methods: PubMed and Google Scholar were used to identify 74 published articles using cell-derived EVs loaded with sncRNA. EV source, EV surface modifications, type of loaded RNA, loading methods, and dosages used in preclinical studies were quantitatively analyzed to identify trends and discrepancies.

Results: Most studies utilize naïve EVs derived from stem or immortalized cells, with electroporation and donor cell transfection being the predominant RNA loading strategies. EV loading and dosage schemes in preclinical studies are mainly based on protein content, while only a minority of studies use particle number. More generally, the variability in measurement units reflects the absence of standardized guidelines for both RNA loading and treatment dosing, generating variability and challenges in comparing results across studies.

Conclusion: Reliable dosing strategies are extremely important for determining the therapeutic potential of EVs in preclinical settings and ensuring clinical translatability. However, a standardized framework for EVs as robust platforms for RNA delivery remains to be established. We underscore the critical need for universal quantification methods, standardized measurement units, and reproducible protocols for EV production and application.

Keywords

Extracellular vesicles (EVs) / EV engineering / small non-coding RNA / RNA therapy / drug delivery / therapeutic dosing / standardization challenges

Cite this article

Download citation ▾
Lucrezia Luisotti, Lorenzo Germelli, Rebecca Piccarducci, Chiara Giacomelli, Laura Marchetti, Claudia Martini. Extracellular vesicles as vehicles for small non-coding RNA therapeutics: standardization challenges for clinical translation. Extracellular Vesicles and Circulating Nucleic Acids, 2025, 6(3): 398-427 DOI:10.20517/evcna.2025.33

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim YK.RNA therapy: rich history, various applications and unlimited future prospects.Exp Mol Med2022;54:455-65 PMCID:PMC9016686

[2]

Damase TR,Boada C,Pettigrew RI.The limitless future of RNA therapeutics.Front Bioeng Biotechnol2021;9:628137 PMCID:PMC8012680

[3]

Lam JK,Zhang Y.siRNA versus miRNA as therapeutics for gene silencing.Mol Ther Nucleic Acids2015;4:e252 PMCID:PMC4877448

[4]

Hu B,Weng Y.Therapeutic siRNA: state of the art.Signal Transduct Target Ther2020;5:101 PMCID:PMC7305320

[5]

Fu Y,Huang Z.Recent progress in microRNA-based delivery systems for the treatment of human disease.ExRNA2019;1:24

[6]

Tang L,Hao NB.MicroRNA inhibitors: natural and artificial sequestration of microRNA.Cancer Lett2017;407:139-47

[7]

Mcdonald MK.MicroRNA biology and pain. molecular and cell biology of pain. Elsevier; 2015. pp. 215-49. PMCID:PMC12076179

[8]

Beavers KR,Duvall CL.MiRNA inhibition in tissue engineering and regenerative medicine.Adv Drug Deliv Rev2015;88:123-37 PMCID:PMC4485980

[9]

Yoo J,Jeong D.Generation of efficient miRNA inhibitors using tough decoy constructs. In: Ishikawa K, Editor. Cardiac gene therapy. New York: Springer; 2017. pp. 41-53.

[10]

Chery J.RNA therapeutics: RNAi and antisense mechanisms and clinical applications.Postdoc J2016;4:35-50 PMCID:PMC4995773

[11]

Zhu Y,Wang X.RNA-based therapeutics: an overview and prospectus.Cell Death Dis2022;13:644 PMCID:PMC9308039

[12]

Niel G, D’Angelo G, Raposo G.Nat Rev Mol Cell Biol2018;19:213-28

[13]

Welsh JA,O’Driscoll L.MISEV ConsortiumMinimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches.J Extracell Vesicles2024;13:e12404 PMCID:PMC10850029

[14]

Doyle LM.Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis.Cells2019;8:727 PMCID:PMC6678302

[15]

Sharma V.Exosome as drug delivery system: current advancements.Extracell Vesicle2024;3:100032

[16]

Amiri A,Ansari Dezfouli E,Jafari R.Exosomes as bio-inspired nanocarriers for RNA delivery: preparation and applications.J Transl Med2022;20:125 PMCID:PMC8919142

[17]

Kim HI,Zhu Y,Han Y.Recent advances in extracellular vesicles for therapeutic cargo delivery.Exp Mol Med2024;56:836-49 PMCID:PMC11059217

[18]

Sen S,Kumar N,Ranjan OP.Exosomes as natural nanocarrier-based drug delivery system: recent insights and future perspectives.3 Biotech2023;13:101 PMCID:PMC9970142

[19]

Jafari D,Jafari R.Designer exosomes: a new platform for biotechnology therapeutics.BioDrugs2020;34:567-86 PMCID:PMC7402079

[20]

Wang CK,Lee CH.Regulation of exosomes as biologic medicines: regulatory challenges faced in exosome development and manufacturing processes.Clin Transl Sci2024;17:e13904 PMCID:PMC11307316

[21]

Gupta D,El Andaloussi S.Dosing extracellular vesicles.Adv Drug Deliv Rev2021;178:113961

[22]

Alvarez-Erviti L,Yin H,Lakhal S.Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.Nat Biotechnol2011;29:341-5

[23]

Xu L,Lim YM.Exosome-mediated RNAi of PAK4 prolongs survival of pancreatic cancer mouse model after loco-regional treatment.Biomaterials2021;264:120369

[24]

Zhang H,Wang J.Surface functionalization of exosomes for chondrocyte-targeted siRNA delivery and cartilage regeneration.J Control Release2024;369:493-505

[25]

Zhang L,Sun Q.Engineering M2 type macrophage-derived exosomes for autoimmune hepatitis immunotherapy via loading siRIPK3.Biomed Pharmacother2024;171:116161

[26]

Bai W,Zuo J,Huang X.Delivery of SAV-siRNA via exosomes from adipose-derived stem cells for the treatment of myocardial infarction.Tissue Eng Regen Med2023;20:1063-77 PMCID:PMC10645647

[27]

Cooper JM,Nordin JZ.Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice.Mov Disord2014;29:1476-85 PMCID:PMC4204174

[28]

Rong Y,Tang P.Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury.Bioact Mater2023;23:328-42 PMCID:PMC9706413

[29]

Bai J,Liu R.Engineered targeting tLyp-1 exosomes as gene therapy vectors for efficient delivery of siRNA into lung cancer cells.Asian J Pharm Sci2020;15:461-71 PMCID:PMC7486479

[30]

Zhang H,Bai M.Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA.Cancer Sci2018;109:629-41 PMCID:PMC5834801

[31]

Kamerkar S,Sugimoto H.Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.Nature2017;546:498-503 PMCID:PMC5538883

[32]

Greco KA,Foreman KE,Kuo PC.PLK-1 silencing in bladder cancer by siRNA delivered with exosomes.Urology2016;91:241.e1-7

[33]

Liu Y,Liu Z.Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse.Sci Rep2015;5:17543 PMCID:PMC4668387

[34]

Han Q,Li F.Targeted inhibition of SIRT6 via engineered exosomes impairs tumorigenesis and metastasis in prostate cancer.Theranostics2021;11:6526-41 PMCID:PMC8120217

[35]

Pei X,Zhang L.Targeted exosomes for co-delivery of siFGL1 and siTGF-β1 trigger combined cancer immunotherapy by remodeling immunosuppressive tumor microenvironment.Chem Eng J2021;421:129774

[36]

Limoni SK,Moazzeni SM,Salimi F.Engineered exosomes for targeted transfer of siRNA to HER2 positive breast cancer cells.Appl Biochem Biotechnol2019;187:352-64

[37]

Lu W,Wu Y,Jiang Z.Engineered NF-κB siRNA-encapsulating exosomes as a modality for therapy of skin lesions.Front Immunol2023;14:1109381 PMCID:PMC9945116

[38]

Liu X,Yu T.Exosomes deliver lncRNA DARS-AS1 siRNA to inhibit chronic unpredictable mild stress-induced TNBC metastasis.Cancer Lett2022;543:215781

[39]

Jiang J,Chu J.Anti-EGFR ScFv functionalized exosomes delivering LPCAT1 specific siRNAs for inhibition of lung cancer brain metastases.J Nanobiotechnology2024;22:159 PMCID:PMC11000333

[40]

Wei R,Zhang Y.AIMP1 promotes multiple myeloma malignancy through interacting with ANP32A to mediate histone H3 acetylation.Cancer Commun2022;42:1185-206 PMCID:PMC9648396

[41]

Xu S,Fan J.Engineered mesenchymal stem cell-derived exosomes with high CXCR4 levels for targeted siRNA gene therapy against cancer.Nanoscale2022;14:4098-113

[42]

Zhou Y,Liu M,Quan Y.Tumor-specific delivery of KRAS siRNA with iRGD-exosomes efficiently inhibits tumor growth.ExRNA2019;1:34

[43]

Zhang Q,Ning T.Exosome-delivered c-Met siRNA could reverse chemoresistance to cisplatin in gastric cancer.Int J Nanomedicine2020;15:2323-35 PMCID:PMC7133545

[44]

Yang T,LaForge B.Delivery of small interfering RNA to inhibit vascular endothelial growth factor in zebrafish using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer.AAPS J2017;19:475-86

[45]

Shokrollahi E,Rahbarghazi R.Treatment of human neuroblastoma cell line SH-SY5Y with HSP27 siRNA tagged-exosomes decreased differentiation rate into mature neurons.J Cell Physiol2019;234:21005-13

[46]

Tang M,Li B.Therapeutic targeting of STAT3 with small interference RNAs and antisense oligonucleotides embedded exosomes in liver fibrosis.FASEB J2021;35:e21557 PMCID:PMC10851328

[47]

Yang J,Zhang J.Exosome-mediated delivery of antisense oligonucleotides targeting α-synuclein ameliorates the pathology in a mouse model of Parkinson’s disease.Neurobiol Dis2021;148:105218

[48]

Esteves M,Fernandes H.MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson’s disease.Mol Ther2022;30:3176-92 PMCID:PMC9552816

[49]

Ghotaslou A,Baghaei K.Harnessing HEK293 cell-derived exosomes for hsa-miR-365a-3p delivery: potential application in hepatocellular carcinoma therapy.Heliyon2024;10:e29333 PMCID:PMC11024613

[50]

Mahati S,Ma X,Xiao L.Delivery of miR-26a using an exosomes-based nanosystem inhibited proliferation of hepatocellular carcinoma.Front Mol Biosci2021;8:738219 PMCID:PMC8450326

[51]

Zhang Z,Xue X.Engineered exosomes carrying miR-588 for treatment of triple negative breast cancer through remodeling the immunosuppressive microenvironment.Int J Nanomedicine2024;19:743-58 PMCID:PMC10821654

[52]

Wan Z,Lu F.Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium.Theranostics2020;10:218-30 PMCID:PMC6929612

[53]

Zhang B,Tao R,Zhou Z.Exosomes loaded with miR-665 inhibit the progression of osteosarcoma in vivo and in vitro.Am J Transl Res2022;14:7012-26 PMCID:PMC9641455

[54]

Nie H,Zhang D.Use of lung-specific exosomes for miRNA-126 delivery in non-small cell lung cancer.Nanoscale2020;12:877-87

[55]

Liang G,Zhu Y,Feng W.Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells.Int J Nanomedicine2018;13:585-99 PMCID:PMC5796471

[56]

Deng W,Wang B. In vitro experimental study on the formation of microRNA-34a loaded exosomes and their inhibitory effect in oral squamous cell carcinoma.Cell Cycle2022;21:1775-83 PMCID:PMC9302529

[57]

Kim H.Exosome-mediated Let7c-5p delivery for breast cancer therapeutic development.Biotechnol Bioprocess Eng2020;25:513-20

[58]

Zhang K,Chen M.Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma.Theranostics2020;10:411-25 PMCID:PMC6929625

[59]

Huang T,Fang L.Extracellular vesicle-derived miR-511-3p from hypoxia preconditioned adipose mesenchymal stem cells ameliorates spinal cord injury through the TRAF6/S1P axis.Brain Res Bull2022;180:73-85

[60]

Zhang A,Yi W,Hao J.Overexpression of miR-338-5p in exosomes derived from mesenchymal stromal cells provides neuroprotective effects by the Cnr1/Rap1/Akt pathway after spinal cord injury in rats.Neurosci Lett2021;761:136124

[61]

Jahangard Y,Moradi A,Mirnajafi-Zadeh J.Therapeutic effects of transplanted exosomes containing miR-29b to a rat model of Alzheimer’s disease.Front Neurosci2020;14:564 PMCID:PMC7314926

[62]

Chivero ET,Niu F.Engineered extracellular vesicles loaded with miR-124 attenuate cocaine-mediated activation of microglia.Front Cell Dev Biol2020;8:573 PMCID:PMC7409518

[63]

Ding Y,Sun H.Exosomes derived from human umbilical cord mesenchymal stromal cells deliver exogenous miR-145-5p to inhibit pancreatic ductal adenocarcinoma progression.Cancer Lett2019;442:351-61

[64]

Yu Y,Jia R.Exosomes loaded with the anti-cancer molecule mir-1-3p inhibit intrapulmonary colonization and growth of human esophageal squamous carcinoma cells.J Transl Med2024;22:1166 PMCID:PMC11687107

[65]

Yang M,Han X.Modified bone marrow mesenchymal stem cells derived exosomes loaded with MiRNA ameliorates non-small cell lung cancer.J Cell Mol Med2024;28:e70115 PMCID:PMC11423648

[66]

Gu J,Liang H,Gu X.Engineered bone marrow mesenchymal stem cell-derived exosomes loaded with miR302 through the cardiomyocyte specific peptide can reduce myocardial ischemia and reperfusion (I/R) injury.J Transl Med2024;22:168 PMCID:PMC10874538

[67]

Lv Q,Chen Y,Liu B.Engineered human adipose stem-cell-derived exosomes loaded with miR-21-5p to promote diabetic cutaneous wound healing.Mol Pharm2020;17:1723-33

[68]

Abbas A,Ullah A.Enhanced spinal cord repair using bioengineered induced pluripotent stem cell-derived exosomes loaded with miRNA.Mol Med2024;30:168 PMCID:PMC11446086

[69]

Jin Y,Chen Y.The homologous tumor-derived-exosomes loaded with miR-1270 selectively enhanced the suppression effect for colorectal cancer cells.Cancer Med2024;13:e6936 PMCID:PMC10807586

[70]

Mi L,Li N.Human umbilical cord mesenchymal stem cell-derived exosomes loaded miR-451a targets ATF2 to improve rheumatoid arthritis.Int Immunopharmacol2024;127:111365

[71]

Wen J,Liao C.Engineered mesenchymal stem cell exosomes loaded with miR-34c-5p selectively promote eradication of acute myeloid leukemia stem cells.Cancer Lett2023;575:216407

[72]

Hu J,Zhang XY.Synthetic miR-26a mimics delivered by tumor exosomes repress hepatocellular carcinoma through downregulating lymphoid enhancer factor 1.Hepatol Int2023;17:1265-78

[73]

Sun X,Teng L.MiRNA 24-3p-rich exosomes functionalized DEGMA-modified hyaluronic acid hydrogels for corneal epithelial healing.Bioact Mater2023;25:640-56 PMCID:PMC10086767

[74]

Gao W,Yin C,Zhu X.Engineered exosomes loaded with miR-563 inhibit lung cancer growth.J Oncol2022;2022:6141857 PMCID:PMC9462977

[75]

Zhao Z,Gao Y.Targeted delivery of exosomal miR-484 reprograms tumor vasculature for chemotherapy sensitization.Cancer Lett2022;530:45-58

[76]

Sun J,Jiang Y,Liu H.Engineered small extracellular vesicles loaded with miR-654-5p promote ferroptosis by targeting HSPB1 to alleviate sorafenib resistance in hepatocellular carcinoma.Cell Death Discov2023;9:362 PMCID:PMC10542782

[77]

Duarte-Sanmiguel S,Panic A.ICAM-1-decorated extracellular vesicles loaded with miR-146a and Glut1 drive immunomodulation and hinder tumor progression in a murine model of breast cancer.Biomater Sci2023;11:6834-47 PMCID:PMC10591940

[78]

Santos NL,Reis PP,Andrade LNS.Extracellular vesicle-packaged miR-195-5p sensitizes melanoma to targeted therapy with kinase inhibitors.Cells2023;12:1317 PMCID:PMC10177607

[79]

Luo H,Li R.Genetically engineered CXCR4-modified exosomes for delivery of miR-126 mimics to macrophages alleviate periodontitis.J Nanobiotechnology2023;21:116 PMCID:PMC10061745

[80]

Ge L,Lin H.Engineered exosomes derived from miR-132-overexpresssing adipose stem cells promoted diabetic wound healing and skin reconstruction.Front Bioeng Biotechnol2023;11:1129538 PMCID:PMC10014603

[81]

Ohno S,Sudo K.Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells.Mol Ther2013;21:185-91 PMCID:PMC3538304

[82]

Baldari S,Magenta A,Toietta G.Extracellular vesicles-encapsulated microRNA-125b produced in genetically modified mesenchymal stromal cells inhibits hepatocellular carcinoma cell proliferation.Cells2019;8:1560 PMCID:PMC6952965

[83]

Tao SC,Li M,Guo YP.Chitosan wound dressings incorporating exosomes derived from microRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model.Stem Cells Transl Med2017;6:736-47 PMCID:PMC5442792

[84]

Lou G,Yang F.Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma.J Hematol Oncol2015;8:122 PMCID:PMC4627430

[85]

Katakowski M,Zheng X.Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth.Cancer Lett2013;335:201-4 PMCID:PMC3665755

[86]

Ma X,Li J.Loading miR-210 in endothelial progenitor cells derived exosomes boosts their beneficial effects on hypoxia/reoxygeneation-injured human endothelial cells via protecting mitochondrial function.Cell Physiol Biochem2018;46:664-75

[87]

Chen Q,Ding X.Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7.Mol Cell Biochem2020;465:103-14 PMCID:PMC6955239

[88]

Naseri Z,Jaafari MR.Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo.Int J Nanomedicine2018;13:7727-47 PMCID:PMC6251455

[89]

Han S,Jia M.Delivery of anti-miRNA-221 for colorectal carcinoma therapy using modified cord blood mesenchymal stem cells-derived exosomes.Front Mol Biosci2021;8:743013 PMCID:PMC8488275

[90]

Kim G,Lee Y,Hwang DW.Systemic delivery of microRNA-21 antisense oligonucleotides to the brain using T7-peptide decorated exosomes.J Control Release2020;317:273-81

[91]

Wang J,Faleti OD.Exosomal delivery of antagomirs targeting viral and cellular micrornas synergistically inhibits cancer angiogenesis.Mol Ther Nucleic Acids2020;22:153-65 PMCID:PMC7494942

[92]

Dai H,Deng L.Hierarchically injectable hydrogel sequentially delivers antagomiR-467a-3p-loaded and antagomiR-874-5p-loaded satellite-cell-targeting bioengineered extracellular vesicles attenuating sarcopenia.Adv Healthc Mater2023;12:e2203056 PMCID:PMC11468726

[93]

Monfared H,Nikkhah M,Mowla SJ.Potential therapeutic effects of exosomes packed with a miR-21-sponge construct in a rat model of glioblastoma.Front Oncol2019;9:782 PMCID:PMC6710330

[94]

Wang J,Ho EA.Challenges in the development and establishment of exosome-based drug delivery systems.J Control Release2021;329:894-906

[95]

Fu S,Xia X.Exosome engineering: current progress in cargo loading and targeted delivery.NanoImpact2020;20:100261

[96]

Han Y,Dutta S.Overview and update on methods for cargo loading into extracellular vesicles.Processes2021;9:356 PMCID:PMC8096148

[97]

Zhang D,Zhu Z,Jin Y.Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo.Am J Physiol Lung Cell Mol Physiol2017;312:L110-21 PMCID:PMC5283929

[98]

Gao J,Hu J,Liu L.Recent developments in isolating methods for exosomes.Front Bioeng Biotechnol2022;10:1100892 PMCID:PMC9879965

[99]

Lötvall J,Hochberg F.Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles.J Extracell Vesicles2014;3:26913 PMCID:PMC4275645

[100]

Gudbergsson JM,Skov MN.Systematic review of factors influencing extracellular vesicle yield from cell cultures.Cytotechnology2016;68:579-92 PMCID:PMC4960200

[101]

Zheng B,Guo M.Current development of mesenchymal stem cell-derived extracellular vesicles.Cell Transplant2025;34:9636897241297623 PMCID:PMC11775985

[102]

Phinney DG.Concise review: MSC-derived exosomes for cell-free therapy.Stem Cells2017;35:851-8

[103]

Johnson J,Mitchell Crow J.From mesenchymal stromal cells to engineered extracellular vesicles: a new therapeutic paradigm.Front Cell Dev Biol2021;9:705676 PMCID:PMC8366519

[104]

Jia Q,Wang Y,Zhang Z.Mechanisms and applications of adipose-derived stem cell-extracellular vesicles in the inflammation of wound healing.Front Immunol2023;14:1214757 PMCID:PMC10376705

[105]

Abdulmalek OAAY,AlKhalifa HKAA,Butler AE.Therapeutic applications of stem cell-derived exosomes.Int J Mol Sci2024;25:3562 PMCID:PMC10971636

[106]

Yang S,Zhou X.A new large-scale extracellular vesicle production strategy for biomedical drug development.bioRxiv2024;bioRxiv:2024-04.15.589541. Available from accessed 15 July 2025]

[107]

Liguori GL.Pathological and therapeutic significance of tumor-derived extracellular vesicles in cancer cell migration and metastasis.Cancers2023;15:4425 PMCID:PMC10648223

[108]

Richter M,Musielak M,Suchorska WM.From donor to the lab: a fascinating journey of primary cell lines.Front Cell Dev Biol2021;9:711381 PMCID:PMC8356673

[109]

Escudé Martinez de Castilla P,Huang C.Extracellular vesicles as a drug delivery system: a systematic review of preclinical studies.Adv Drug Deliv Rev2021;175:113801

[110]

Mizenko RR,Bozkurt BT.A critical systematic review of extracellular vesicle clinical trials.J Extracell Vesicles2024;13:e12510 PMCID:PMC11428870

[111]

Sanz-Ros J,Romero-García N,Dromant M.Extracellular vesicles as therapeutic resources in the clinical environment.Int J Mol Sci2023;24:2344 PMCID:PMC9917082

[112]

Duong A,Kirkham AM,Allan DS.Registered clinical trials investigating treatment with cell-derived extracellular vesicles: a scoping review.Cytotherapy2023;25:939-45

[113]

Elsharkasy OM,Hagey DW.Extracellular vesicles as drug delivery systems: why and how?.Adv Drug Deliv Rev2020;159:332-43

[114]

Richter M,Fuhrmann G.Approaches to surface engineering of extracellular vesicles.Adv Drug Deliv Rev2021;173:416-26

[115]

Piccarducci R,Falleni A.GFp farnesylation as a suitable strategy for selectively tagging exosomes.ACS Appl Bio Mater2024;7:8305-18

[116]

Danilushkina AA,Barlev NA.Strategies for engineering of extracellular vesicles.Int J Mol Sci2023;24:13247 PMCID:PMC10488046

[117]

Diener C,Meese E.Emerging concepts of miRNA therapeutics: from cells to clinic.Trends Genet2022;38:613-26

[118]

Ebert MS,Sharp PA.MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells.Nat Methods2007;4:721-6 PMCID:PMC3857099

[119]

Dhuri K,Quijano E.Antisense oligonucleotides: an emerging area in drug discovery and development.J Clin Med2020;9:2004 PMCID:PMC7355792

[120]

Nguyen VVT,Verhaar MC,van Balkom BWM.Functional assays to assess the therapeutic potential of extracellular vesicles.J Extracell Vesicles2020;10:e12033 PMCID:PMC7890556

[121]

Hartjes TA,Jenster GW,van Royen ME.Extracellular vesicle quantification and characterization: common methods and emerging approaches.Bioengineering2019;6:7 PMCID:PMC6466085

[122]

Vogel R,Muzard J.Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge?.J Extracell Vesicles2021;10:e12052 PMCID:PMC7804049

[123]

Mladenović D,Peacock B,Zarovni N.Quantitative fluorescent nanoparticle tracking analysis and nano-flow cytometry enable advanced characterization of single extracellular vesicles.J Extracell Biol2025;4:e70031 PMCID:PMC11707551

[124]

Lennaárd AJ,Wiklander RJ,Wiklander OPB.Optimised electroporation for loading of extracellular vesicles with doxorubicin.Pharmaceutics2021;14:38 PMCID:PMC8780628

[125]

Pomatto MAC,D’Antico S.Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs.Mol Ther Methods Clin Dev2019;13:133-44 PMCID:PMC6370572

[126]

Kooijmans SAA,Braeckmans K.Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles.J Control Release2013;172:229-38

[127]

Taylor SC,Germain H.Droplet digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data.Sci Rep2017;7:2409 PMCID:PMC5445070

[128]

Wojnilowicz M,Bertucci A,Cavalieri F.Super-resolution imaging of proton sponge-triggered rupture of endosomes and cytosolic release of small interfering RNA.ACS Nano2019;13:187-202

[129]

Ghanam J,Zhu X.Single molecule localization microscopy for studying small extracellular vesicles.Small2023;19:e2205030

[130]

Linares R,Gounou C.Imaging and quantification of extracellular vesicles by transmission electron microscopy. In: Hill AF, Editor. Exosomes and microvesicles. New York: Springer; 2017. pp. 43-54.

[131]

Bader J,Mantella V.Loading of extracellular vesicles with nucleic acids via hybridization with non-lamellar liquid crystalline lipid nanoparticles.Adv Sci2025;12:e2404860 PMCID:PMC11848734

[132]

Ma H,Zhang K.Cryo-EM advances in RNA structure determination.Signal Transduct Target Ther2022;7:58 PMCID:PMC8864457

[133]

Pastuzyn ED,Kearns RB.The neuronal gene arc encodes a repurposed retrotransposon gag protein that mediates intercellular RNA transfer.Cell2018;172:275-288.e18 PMCID:PMC5884693

[134]

Wang F,Su N.RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues.J Mol Diagn2012;14:22-9 PMCID:PMC3338343

[135]

Voogt WS, Tanenbaum ME, Vader P.Adv Drug Deliv Rev2021;174:250-64

[136]

Gurunathan S,Jeyaraj M,Kim JH.Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes.Cells2019;8:307 PMCID:PMC6523673

[137]

Payandeh Z,Synnergren J.Extracellular vesicles transport RNA between cells: unraveling their dual role in diagnostics and therapeutics.Mol Aspects Med2024;99:101302

[138]

O’Brien K,Ughetto S,Breakefield XO.RNA delivery by extracellular vesicles in mammalian cells and its applications.Nat Rev Mol Cell Biol2020;21:585-606 PMCID:PMC7249041

[139]

Buratta S,Sagini K.Lysosomal exocytosis, exosome release and secretory autophagy: the autophagic- and endo-lysosomal systems go extracellular.Int J Mol Sci2020;21:2576 PMCID:PMC7178086

[140]

Hung ME.A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery.J Extracell Vesicles2016;5:31027 PMCID:PMC4870355

[141]

Nakase I,Harashima H.Application of a fusiogenic peptide GALA for intracellular delivery. In: Langel Ü, Editor. Cell-penetrating peptides. Totowa: Humana Press; 2011. pp. 525-33.

[142]

Qiu C,Zhang J.Advanced strategies for overcoming endosomal/lysosomal barrier in nanodrug delivery.Research2023;6:0148 PMCID:PMC10208951

[143]

Liang X,Xie J.Multimodal engineering of extracellular vesicles for efficient intracellular protein delivery.bioRxiv2023;bioRxiv:2023-04.30.535834. Available from accessed 15 July 2025]

[144]

Driedonks T,Carlson B.Pharmacokinetics and biodistribution of extracellular vesicles administered intravenously and intranasally to Macaca nemestrina.J Extracell Biol2022;1:e59 PMCID:PMC9799283

[145]

Wiklander OP,O’Loughlin A.Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting.J Extracell Vesicles2015;4:26316 PMCID:PMC4405624

[146]

Gupta D,Pavlova S.Quantification of extracellular vesicles in vitro and in vivo using sensitive bioluminescence imaging.J Extracell Vesicles2020;9:1800222 PMCID:PMC7481830

[147]

der Koog L, Gandek TB, Nagelkerke A.Adv Healthc Mater2022;11:e2100639 PMCID:PMC11468589

AI Summary AI Mindmap
PDF

283

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/