Special delivery - extracellular vesicles released by commensal gut bacteria deliver bioactive protein to distal organs

Emily J. Jones , Aimee Parker , Rokas Juodeikis , L. Ashley Blackshaw , Arlaine Brion , Simon R. Carding

Extracellular Vesicles and Circulating Nucleic Acids ›› 2025, Vol. 6 ›› Issue (4) : 791 -806.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2025, Vol. 6 ›› Issue (4) :791 -806. DOI: 10.20517/evcna.2025.32
Original Article

Special delivery - extracellular vesicles released by commensal gut bacteria deliver bioactive protein to distal organs

Author information +
History +
PDF

Abstract

Aim: This study aims to investigate how the gut microbiota communicates with the host via bacterial extracellular vesicles (BEVs), given that direct contact between microbes and the healthy intestinal epithelium is prevented by a sterile mucin gel layer. Understanding these indirect interactions is critical because the specific pathways and mediators of microbiota-host interactions are incompletely understood. Tracking BEVs in vivo however is particularly challenging due to their nanoscale size and complex molecular composition.

Methods: To address these challenges, we developed a highly sensitive Nanoluciferase (NanoLuc) system for luminescence-based detection of BEVs produced by the model human commensal bacterium Bacteroides thetaiotaomicron. This approach was evaluated in germ-free and specific-pathogen-free mice, with comparisons between administration routes demonstrating the advantages of this system for in vivo BEV labelling over conventional lipophilic dyes.

Results: We report, for the first time, that BEVs endogenously produced in the gastrointestinal tract (GIT) of mice can deliver bioactive NanoLuc protein to multiple organ tissues, including the central nervous system. Our findings establish that naturally occurring BEVs in the GIT are capable of traversing multiple host barriers, including the intestinal epithelium, vascular endothelium, and the blood-brain-barrier, to access tissues such as the brain and eyes.

Conclusion: These findings advance our understanding of BEV-mediated microbe-host interactions and demonstrate the potential of BEVs as vehicles for long-distance delivery of bioactive therapeutics.

Keywords

Bioengineering / BEV / Bacteroides / biodistribution / Nanoluciferase / microbe-host interactions / central nervous system

Cite this article

Download citation ▾
Emily J. Jones, Aimee Parker, Rokas Juodeikis, L. Ashley Blackshaw, Arlaine Brion, Simon R. Carding. Special delivery - extracellular vesicles released by commensal gut bacteria deliver bioactive protein to distal organs. Extracellular Vesicles and Circulating Nucleic Acids, 2025, 6(4): 791-806 DOI:10.20517/evcna.2025.32

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Neish AS.Microbes in gastrointestinal health and disease.Gastroenterology2009;136:65-80 PMCID:PMC2892787

[2]

Cryan JF,Cowan CSM.The microbiota-gut-brain axis.Physiol Rev2019;99:1877-2013

[3]

Song C,Chen S,Zhang X.Intestinal mucus components and secretion mechanisms: what we do and do not know.Exp Mol Med2023;55:681-91 PMCID:PMC10167328

[4]

Ghosh S,Haribabu B.Regulation of intestinal barrier function by microbial metabolites.Cell Mol Gastroenterol Hepatol2021;11:1463-82 PMCID:PMC8025057

[5]

Toyofuku M,Kaparakis-Liaskos M.Composition and functions of bacterial membrane vesicles.Nat Rev Microbiol2023;21:415-30

[6]

Melo-Marques I,Empadinhas N.Bacterial extracellular vesicles at the interface of gut microbiota and immunity.Gut Microbes2024;16:2396494 PMCID:PMC11444517

[7]

Zou C,Liu H,Zhou X.Extracellular vesicles: recent insights into the interaction between host and pathogenic bacteria.Front Immunol2022;13:840550 PMCID:PMC9174424

[8]

Schaack B,Quansah N,Mercier C.Microbiota-derived extracellular vesicles detected in human blood from healthy donors.Int J Mol Sci2022;23:13787 PMCID:PMC9696020

[9]

Jones EJ,Fonseca S.The uptake, trafficking, and biodistribution of Bacteroides thetaiotaomicron generated outer membrane vesicles.Front Microbiol2020;11:57 PMCID:PMC7015872

[10]

Carvalho AL,Miquel-Clopés A.Bioengineering commensal bacteria-derived outer membrane vesicles for delivery of biologics to the gastrointestinal and respiratory tract.J Extracell Vesicles2019;8:1632100 PMCID:PMC6598475

[11]

Dehghani M,Flax J.Systematic Evaluation of PKH labelling on extracellular vesicle size by nanoparticle tracking analysis.Sci Rep2020;10:9533 PMCID:PMC7293335

[12]

Yi YW,Kim SY.Advances in analysis of biodistribution of exosomes by molecular imaging.Int J Mol Sci2020;21:665 PMCID:PMC7014306

[13]

Takov K,Davidson SM.Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes.J Extracell Vesicles2017;6:1388731 PMCID:PMC5699187

[14]

Simonsen JB.Pitfalls associated with lipophilic fluorophore staining of extracellular vesicles for uptake studies.J Extracell Vesicles2019;8:1582237 PMCID:PMC6383605

[15]

Fonseca S,Miquel-Clopés A.Extracellular vesicles produced by the human gut commensal bacterium Bacteroides thetaiotaomicron elicit anti-inflammatory responses from innate immune cells.Front Microbiol2022;13:1050271 PMCID:PMC9684339

[16]

Whitaker WR,Sonnenburg JL.Tunable expression tools enable single-cell strain distinction in the gut microbiome.Cell2017;169:538-46.e12 PMCID:PMC5576361

[17]

Hall MP,Binkowski BF.Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate.ACS Chem Biol2012;7:1848-57 PMCID:PMC3501149

[18]

England CG,Cai W.NanoLuc: a small luciferase is brightening up the field of bioluminescence.Bioconjug Chem2016;27:1175-87 PMCID:PMC4871753

[19]

Gupta D,Pavlova S.Quantification of extracellular vesicles in vitro and in vivo using sensitive bioluminescence imaging.J Extracell Vesicles2020;9:1800222 PMCID:PMC7481830

[20]

Troy T,Sambucetti L.Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models.Mol Imaging2004;3:9-23

[21]

Schaub FX,Flaveny CA.Fluorophore-NanoLuc BRET reporters enable sensitive in vivo optical imaging and flow cytometry for monitoring tumorigenesis.Cancer Res2015;75:5023-33 PMCID:PMC4668208

[22]

Lázaro-Ibáñez E,Saleh AF.Selection of fluorescent, bioluminescent, and radioactive tracers to accurately reflect extracellular vesicle biodistribution in vivo.ACS Nano2021;15:3212-27 PMCID:PMC7905875

[23]

Valguarnera E,Azimzadeh P.Surface exposure and packing of lipoproteins into outer membrane vesicles are coupled processes in Bacteroides.mSphere2018;3:e00559-18 PMCID:PMC6222051

[24]

Juodeikis R,Saalbach G.Differential temporal release and lipoprotein loading in B. thetaiotaomicron bacterial extracellular vesicles.J Extracell Vesicles2024;13:e12406 PMCID:PMC10797578

[25]

Modasia AA,Martel LM.The use of a multicellular in vitro model to investigate uptake and migration of bacterial extracellular vesicles derived from the human gut commensal Bacteroides thetaiotaomicron.J Extracell Biol2023;2:e93 PMCID:PMC11080816

[26]

González-González M,Eyzaguirre-Velásquez J,Bravo JA.Investigating gut permeability in animal models of disease.Front Physiol2018;9:1962 PMCID:PMC6341294

[27]

Braniste V,Kowal C.The gut microbiota influences blood-brain barrier permeability in mice.Sci Transl Med2014;6:263ra158 PMCID:PMC4396848

[28]

Ji N,Wang M,Liu H.Engineered bacterial extracellular vesicles for central nervous system diseases.J Control Release2023;364:46-60

[29]

Shi Y,Zhang S.Research progress in in vivo tracing technology for extracellular vesicles.Extracell Vesicles Circ Nucl Acids2023;4:684-97 PMCID:PMC11648465

[30]

Álamo P,Céspedes MV.Fluorescent dye labeling changes the biodistribution of tumor-targeted nanoparticles.Pharmaceutics2020;12:1004 PMCID:PMC7690626

[31]

Zhang YN,Tavares AJ,Chan WCW.Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination.J Control Release2016;240:332-48

[32]

Hosseini-Kharat M,Prestidge CA.Why do lipid nanoparticles target the liver? Understanding of biodistribution and liver-specific tropism.Mol Ther Methods Clin Dev2025;33:101436 PMCID:PMC11919328

[33]

He Y,Wang L,Wilhelm S.Understanding nanoparticle-liver interactions in nanomedicine.Expert Opin Drug Deliv2024;21:829-43 PMCID:PMC11281865

[34]

Parthasarathy G,Kostallari E,Ibrahim SH.Extracellular vesicles in hepatobiliary health and disease.Compr Physiol2023;13:4631-58 PMCID:PMC10798368

[35]

Gandek TB,Nagelkerke A.A comparison of cellular uptake mechanisms, delivery efficacy, and intracellular fate between liposomes and extracellular vesicles.Adv Healthc Mater2023;12:e2300319 PMCID:PMC11469107

[36]

Boudna M,Vychytilova-Faltejskova P,Slaby O.Strategies for labelling of exogenous and endogenous extracellular vesicles and their application for in vitro and in vivo functional studies.Cell Commun Signal2024;22:171 PMCID:PMC10924393

[37]

Lee KE,Han SK.The extracellular vesicle of gut microbial Paenalcaligenes hominis is a risk factor for vagus nerve-mediated cognitive impairment.Microbiome2020;8:107 PMCID:PMC7364628

[38]

Ma X,Yoo JW,Kim DH.Extracellular vesicles derived from Porphyromonas gingivalis induce trigeminal nerve-mediated cognitive impairment.J Adv Res2023;54:293-303 PMCID:PMC10703712

[39]

Palacios E,Guerrero S.Helicobacter pylori outer membrane vesicles induce astrocyte reactivity through nuclear factor-κappa B activation and cause neuronal damage in vivo in a murine model.J Neuroinflammation2023;20:66 PMCID:PMC9996972

[40]

Park AM.Helicobacter pylori infection in the stomach induces neuroinflammation: the potential roles of bacterial outer membrane vesicles in an animal model of Alzheimer’s disease.Inflamm Regen2022;42:39 PMCID:PMC9442937

[41]

Xie J,Van Imschoot G.Helicobacter pylori-derived outer membrane vesicles contribute to Alzheimer’s disease pathogenesis via C3-C3aR signalling.J Extracell Vesicles2023;12:e12306 PMCID:PMC9931688

[42]

Bittel M,Sarfati I.Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo.J Extracell Vesicles2021;10:e12159 PMCID:PMC8524437

[43]

Ha JY,Lee JH,Lee HJ.Delivery of periodontopathogenic extracellular vesicles to brain monocytes and microglial IL-6 promotion by RNA cargo.Front Mol Biosci2020;7:596366 PMCID:PMC7732644

[44]

Huang Y,Chen Q.Genetically engineered bacterial outer membrane vesicles with expressed nanoluciferase reporter for in vivo bioluminescence kinetic modeling through noninvasive imaging.ACS Appl Bio Mater2019;2:5608-15

[45]

Wei S,Mai Y.Outer membrane vesicles enhance tau phosphorylation and contribute to cognitive impairment.J Cell Physiol2020;235:4843-55

[46]

Meng D,Zhang L.Helicobacter pylori outer membrane vesicles directly promote Aβ aggregation and enhance Aβ toxicity in APP/PS1 mice.Commun Biol2024;7:1474 PMCID:PMC11549467

[47]

Round JL.The gut microbiota shapes intestinal immune responses during health and disease.Nat Rev Immunol2009;9:313-23 PMCID:PMC4095778

[48]

Durant L,Noble A.Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease.Microbiome2020;8:88 PMCID:PMC7282036

[49]

Weinberger V,Thapa HB.Proteomic and metabolomic profiling of extracellular vesicles produced by human gut archaea.Nat Commun2025;16:5094 PMCID:PMC12134236

[50]

Cuenca S,Santiago A.Microbiome composition by pyrosequencing in mesenteric lymph nodes of rats with CCl4-induced cirrhosis.J Innate Immun2014;6:263-71 PMCID:PMC6741495

AI Summary AI Mindmap
PDF

208

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/