Comparative analysis of adipose-, bone marrow-, and amniotic membrane-derived MSC secretomes and EVs reveals shared and source-specific therapeutic signatures for osteoarthritis
Enrico Ragni , Andrea Papait , Michela Maria Taiana , Paola De Luca , Giulio Grieco , Elsa Vertua , Pietro Romele , Antonietta Rosa Silini , Ornella Parolini , Laura de Girolamo
Extracellular Vesicles and Circulating Nucleic Acids ›› 2025, Vol. 6 ›› Issue (4) : 1079 -99.
Comparative analysis of adipose-, bone marrow-, and amniotic membrane-derived MSC secretomes and EVs reveals shared and source-specific therapeutic signatures for osteoarthritis
Aim: Mesenchymal stromal cells (MSCs) exert their therapeutic effects in osteoarthritis (OA) primarily through paracrine signaling, including secreted proteins and extracellular vesicle (EV)-associated microRNAs (miRNAs). However, the contribution of tissue origin to the composition and function of these secretomes remains unclear. This study aimed to provide a comprehensive molecular and functional comparison of secretomes from adipose-derived (ASCs), bone marrow-derived MSCs (BMSCs) and human amniotic membrane-derived MSCs, with a specific focus on OA-relevant pathways.
Methods: MSCs were immunophenotyped by flow cytometry. Secretomes were profiled for 200 factors and 784 EV-miRNAs. Functional enrichment was performed using Gene Ontology and Reactome databases. In vitro, secretomes were tested on interleukin (IL)-1β-stimulated human chondrocytes to assess modulation of OA-related gene expression.
Results: All MSC secretomes shared a core of factors enriched in anti-inflammatory and matrix-regulatory functions. ASCs showed the differential expression of a few modulators, potentially shifting their chondroprotective phenotype. EV-miRNAs further distinguished the MSC types. ASCs and BMSCs clustered closely in both overall miRNA content and functional enrichment, which included pathways for extracellular matrix organization, angiogenesis and IL-6 signaling. BMSC- and ASC-EVs had a higher ratio of OA-protective to destructive miRNAs, including miR-24-3p, miR-125b-5p and miR-222-3p. Functional assays confirmed that all MSC secretomes were effective in suppressing key OA-related genes in inflamed chondrocytes, with ASCs and BMSCs having a stronger activity.
Conclusion: These findings support the development of MSC-derived cell-free therapies and emphasize the importance of molecular profiling in MSC source selection. Further studies are warranted to validate these observations and optimize MSC-based interventions for clinical translation in OA.
Mesenchymal stromal cells / secretome / extracellular vesicles / miRNAs / osteoarthritis / chondroprotection / paracrine signaling / tissue regeneration
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
van Helvoort EM, van der Heijden E, van Roon JAG, Eijkelkamp N, Mastbergen SC. The role of interleukin-4 and interleukin-10 in osteoarthritic joint disease: a systematic narrative review.Cartilage2022;13:19476035221098167 PMCID:PMC9251827 |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
/
| 〈 |
|
〉 |