Synergistic potentials of small extracellular vesicles, biomaterials, and 3D bioprinting in periodontal regeneration: a scoping review

Chenyi Zhang , Chun Liu , Andrew Liaw , Sašo Ivanovski , Pingping Han

Extracellular Vesicles and Circulating Nucleic Acids ›› 2025, Vol. 6 ›› Issue (4) : 954 -81.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2025, Vol. 6 ›› Issue (4) :954 -81. DOI: 10.20517/evcna.2025.107
Review

Synergistic potentials of small extracellular vesicles, biomaterials, and 3D bioprinting in periodontal regeneration: a scoping review

Author information +
History +
PDF

Abstract

Periodontitis is a chronic inflammatory disease characterized by the progressive destruction of both soft (gingiva and periodontal ligament) and hard (cementum and alveolar bone) supporting tissues. The complex periodontal microenvironment often limits the effectiveness of current clinical treatments in achieving functional tissue regeneration. Although mesenchymal and immune cell-based therapies hold promise, concerns related to cell viability and immune compatibility limit their clinical translation. As a natural secretome, small extracellular vesicles (sEVs) are cell-secreted nanoparticles that deliver bioactive molecules for cell-to-cell communication to modulate immune response and promote tissue regeneration. To assess the translational readiness of sEVs therapy, this scoping review first outlines the current clinical trials of mesenchymal stem cells (MSCs)-sEVs in periodontitis, followed by a transition to preclinical application of integrating sEVs with biomaterial scaffolds to enhance localized regenerative outcomes. We then analyzed eight preclinical studies utilizing 3D bioprinted MSCs-sEVs/human umbilical vein endothelial cells-sEVs (or immune cell-derived sEVs) constructs in bone and vasculature regeneration models, and one study related to in vitro periodontal regeneration. These constructs exhibited improved outcomes in osteogenesis, angiogenesis, and immunomodulation, supporting their potential for future translational applications in periodontal therapy. Given the early stage of bioprinted sEVs constructs in periodontitis, we outline critical research gaps and potential future directions to overcome current technical and biological challenges. Together, this review demonstrated the translational trajectory of sEV-based strategies for periodontal regeneration. It offers a potential roadmap for utilizing sEV-based periodontal regeneration across clinical, preclinical, and biofabrication applications, highlighting their potential as next-generation, cell-free therapeutics in regenerative periodontics.

Keywords

Small extracellular vesicles / 3D bioprinting / periodontitis / regeneration / tissue engineering

Cite this article

Download citation ▾
Chenyi Zhang, Chun Liu, Andrew Liaw, Sašo Ivanovski, Pingping Han. Synergistic potentials of small extracellular vesicles, biomaterials, and 3D bioprinting in periodontal regeneration: a scoping review. Extracellular Vesicles and Circulating Nucleic Acids, 2025, 6(4): 954-81 DOI:10.20517/evcna.2025.107

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bartold PM.Host modulation: controlling the inflammation to control the infection.Periodontol 20002017;75:317-29

[2]

Walther KA,Vogler JAH,Meyle J.Inflammation indices in association with periodontitis and cancer.Periodontol 20002024;96:281-315 PMCID:PMC11579835

[3]

Meyle J.Molecular aspects of the pathogenesis of periodontitis.Periodontol 20002015;69:7-17

[4]

Jepsen K.Antibiotics/antimicrobials: systemic and local administration in the therapy of mild to moderately advanced periodontitis.Periodontol 20002016;71:82-112

[5]

Ma Y,Chen Y.Biomimetic peridontium patches for functional periodontal regeneration.Adv Healthc Mater2023;12:e2202169

[6]

Liu G,Zhou X.The paradigm shifts of periodontal regeneration strategy: From reparative manipulation to developmental engineering.Bioact Mater2025;49:418-36 PMCID:PMC11957753

[7]

Liang Y,Liu X.Recent advances in periodontal regeneration: a biomaterial perspective.Bioact Mater2020;5:297-308 PMCID:PMC7052441

[8]

Ivanovski S.Periodontal regeneration.Aust Dent J2009;54:S118-28

[9]

Bashor CJ,Bandukwala H,Veiseh O.Engineering the next generation of cell-based therapeutics.Nat Rev Drug Discov2022;21:655-75 PMCID:PMC9149674

[10]

Fochtman D,Pietrowska M.Challenges of MS-based small extracellular vesicles proteomics.J Extracell Vesicles2024;13:e70020 PMCID:PMC11653094

[11]

Teleb RS,Othman A.Cord blood plasma and placental mesenchymal stem cells-derived exosomes increase ex vivo expansion of human cord blood hematopoietic stem cells while maintaining their stemness.Cells2023;12:250 PMCID:PMC9857343

[12]

Sun Y,Zhai D.Three-dimensional printing of bioceramic-induced macrophage exosomes: immunomodulation and osteogenesis/angiogenesis.NPG Asia Mater2021;13:340

[13]

Pan Z,Chen Y.Extracellular vesicles in tissue engineering: biology and engineered strategy.Adv Healthc Mater2022;11:e2201384

[14]

Qiao X,Dou L.Dental pulp stem cell-derived exosomes regulate anti-inflammatory and osteogenesis in periodontal ligament stem cells and promote the repair of experimental periodontitis in rats.Int J Nanomedicine2023;18:4683-703 PMCID:PMC10441659

[15]

Han P,Abdal-Hay A,Salomon C.Effects of periodontal cells-derived extracellular vesicles on mesenchymal stromal cell function.J Periodontal Res2023;58:1188-200

[16]

Han P,Liu C.3D bioprinted small extracellular vesicles from periodontal cells enhance mesenchymal stromal cell function.Biomater Adv2024;158:213770

[17]

Miron RJ,Sculean A.Understanding exosomes: part 3-therapeutic + diagnostic potential in dentistry.Periodontol 20002024;94:415-82

[18]

Zhang T,Zhu M.Extracellular vesicles derived from human dental mesenchymal stem cells stimulated with low-intensity pulsed ultrasound alleviate inflammation-induced bone loss in a mouse model of periodontitis.Genes Dis2023;10:1613-25 PMCID:PMC10311020

[19]

Lei F,Lin T,Wang F.Treatment of inflammatory bone loss in periodontitis by stem cell-derived exosomes.Acta Biomater2022;141:333-43

[20]

Ma L,Jiang H.Small extracellular vesicles from dental follicle stem cells provide biochemical cues for periodontal tissue regeneration.Stem Cell Res Ther2022;13:92 PMCID:PMC8895915

[21]

Shakya A,Chang NW.Supra-alveolar bone regeneration: progress, challenges, and future perspectives.Compos B Eng2024;283:111673 PMCID:PMC11270636

[22]

Chew JRJ,Teo KYW.Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration.Acta Biomater2019;89:252-64

[23]

Leung KS,Cooper LF.Biomaterials and extracellular vesicle delivery: current status, applications and challenges.Cells2022;11:2851 PMCID:PMC9497093

[24]

Wang W,Zheng K.Horizon of exosome-mediated bone tissue regeneration: the all-rounder role in biomaterial engineering.Mater Today Bio2022;16:100355 PMCID:PMC9304878

[25]

Lu Y,Cui L.Engineering exosomes and biomaterial-assisted exosomes as therapeutic carriers for bone regeneration.Stem Cell Res Ther2023;14:55 PMCID:PMC10053084

[26]

Gugliandolo A,Trubiani O.Oral bone tissue regeneration: mesenchymal stem cells, secretome, and biomaterials.Int J Mol Sci2021;22:5236 PMCID:PMC8156243

[27]

Gegout PY,Olson J.Interests of exosomes in bone and periodontal regeneration: a systematic review.Adv Exp Med Biol2021;1341:67-87

[28]

Shanbhag S,Domic D.Harnessing the therapeutic potential of cell secretomes and extracellular vesicles for craniofacial regenerative applications.J Periodontal Res2025;Epub ahead of print:

[29]

Ahmad P,Farshidfar N,Miron RJ.Mechanistic insights into periodontal ligament stem cell-derived exosomes in tissue regeneration.Clin Oral Investig2025;29:357 PMCID:PMC12198077

[30]

Miron RJ,Sculean A.Understanding exosomes: part 2 - emerging leaders in regenerative medicine.Periodontol 20002024;94:257-414

[31]

Han P.3D bioprinted extracellular vesicles for tissue engineering-a perspective.Biofabrication2022;15:013001

[32]

Thattaruparambil Raveendran N, Vaquette C, Meinert C, Samuel Ipe D, Ivanovski S. Optimization of 3D bioprinting of periodontal ligament cells.Dent Mater2019;35:1683-94

[33]

Camacho-Cardenosa M,Estrella-Guisado G.Bioprinted hydrogels as vehicles for the application of extracellular vesicles in regenerative medicine.Gels2025;11:191 PMCID:PMC11941778

[34]

Chen P,Wang Y.Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration.Theranostics2019;9:2439-59 PMCID:PMC6525998

[35]

Yerneni SS,Weiss LE.Cell trafficking and regulation of osteoblastogenesis by extracellular vesicle associated bone morphogenetic protein 2.J Extracell Vesicles2021;10:e12155 PMCID:PMC8528095

[36]

Kang Y,Meng L.3D bioprinting of dECM/Gel/QCS/nHAp hybrid scaffolds laden with mesenchymal stem cell-derived exosomes to improve angiogenesis and osteogenesis.Biofabrication2023;15:024103

[37]

Maiullari F,Costantini M. In vivo organized neovascularization induced by 3D bioprinted endothelial-derived extracellular vesicles.Biofabrication2021;13:035014

[38]

Dutta SD,Hexiu J.3D bioprinting of engineered exosomes secreted from M2-polarized macrophages through immunomodulatory biomaterial promotes in vivo wound healing and angiogenesis.Bioact Mater2025;45:345-62 PMCID:PMC11636135

[39]

Sun T,He W.Novel 3D-printing bilayer GelMA-based hydrogel containing BP, β-TCP and exosomes for cartilage-bone integrated repair.Biofabrication2023;16:015008

[40]

Li Q,Zhao F.3D Printing of microenvironment-specific bioinspired and exosome-reinforced hydrogel scaffolds for efficient cartilage and subchondral bone regeneration.Adv Sci2023;10:e2303650 PMCID:PMC10502685

[41]

Jiao K,Basu S.Bioprinting extracellular vesicles as a “cell-free” regenerative medicine approach.Extracell Vesicles Circ Nucl Acids2023;4:218-39 PMCID:PMC11648406

[42]

Koca-Ünsal RB.Roles of exosomes in regenerative periodontology: a narrative review.Mol Biol Rep2022;49:12219-25

[43]

Zheng D,Chen W.Advances in extracellular vesicle functionalization strategies for tissue regeneration.Bioact Mater2023;25:500-26 PMCID:PMC10087114

[44]

Huang X,Xie Y.The roles of osteocytes in alveolar bone destruction in periodontitis.J Transl Med2020;18:479 PMCID:PMC7733264

[45]

Vig S.Bone cell exosomes and emerging strategies in bone engineering.Biomedicines2022;10:767 PMCID:PMC9033129

[46]

Wang Z,Gao B.Exosome mediated biological functions within skeletal microenvironment.Front Bioeng Biotechnol2022;10:953916 PMCID:PMC9355125

[47]

Dayanandan AP,Arai Y,Lee SH.Therapeutic strategy for exosome-based bone regeneration to osteoporosis: challenges and potential solutions.J Adv Res2025;Epub ahead of print:

[48]

Jiao Y,Du J.Advances in the study of extracellular vesicles for bone regeneration.Int J Mol Sci2024;25:3480 PMCID:PMC10970826

[49]

Liu J,Weir MD.Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells.Cells2019;8:537 PMCID:PMC6628570

[50]

Wang T,Zhang W.Exosomes and exosome composite scaffolds in periodontal tissue engineering.Front Bioeng Biotechnol2023;11:1287714 PMCID:PMC10831513

[51]

Yakubovich EI,Evtushenko VI.Principles and problems of exosome isolation from biological fluids.Biochem (Mosc) Suppl Ser A Membr Cell Biol2022;16:115-26 PMCID:PMC9202659

[52]

Xia EJ,Zhao X,Zhang Y.Extracellular vesicles as therapeutic tools in regenerative dentistry.Stem Cell Res Ther2024;15:365 PMCID:PMC11476107

[53]

Liu Z,Huo N,Shi Q.Extracellular vesicles: a potential future strategy for dental and maxillofacial tissue repair and regeneration.Front Physiol2022;13:1012241 PMCID:PMC9719951

[54]

Zhu F,Wang G,He B.The exosome-mediated bone regeneration: an advanced horizon toward the isolation, engineering, carrying modalities, and mechanisms.Adv Healthc Mater2024;13:e2400293

[55]

Lange M,Tobiasch E.Exosomes: a new hope for angiogenesis-mediated bone regeneration.Int J Mol Sci2024;25:5204 PMCID:PMC11120942

[56]

Liu L,Fu S.Endothelial cell-derived exosomes trigger a positive feedback loop in osteogenesis-angiogenesis coupling via up-regulating zinc finger and BTB domain containing 16 in bone marrow mesenchymal stem cell.J Nanobiotechnology2024;22:721 PMCID:PMC11577908

[57]

Saleem M,Marryum M.Exosome-based therapies for inflammatory disorders: a review of recent advances.Stem Cell Res Ther2024;15:477 PMCID:PMC11657721

[58]

Liu C,Hua S,Ivanovski S.Enhanced yield and proteomic profile of osteoblast-derived extracellular vesicles from 3D MEW mPCL scaffolds.J Mater Chem B2025;13:7785-96

[59]

Guerrero J,Pfister P.Mineralized osteoblast-derived exosomes and 3D-printed ceramic-based scaffolds for enhanced bone healing: a preclinical exploration.Acta Biomater2025;200:686-702

[60]

Amondarain M,Puras G,Luzzani C.The role of microfluidics and 3D-bioprinting in the future of exosome therapy.Trends Biotechnol2023;41:1343-59

[61]

Wang R,Huang X.Mechano-responsive microRNA-functionalized PDLSC exosomes as a novel therapeutic for inflammatory bone loss in periodontitis.Chem Eng J2023;458:141488

[62]

Zhao Y,Liu X,Zheng B.The experimental study of periodontal ligament stem cells derived exosomes with hydrogel accelerating bone regeneration on alveolar bone defect.Pharmaceutics2022;14:2189 PMCID:PMC9611133

[63]

Shen Z,Zhang Y.Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism.Bioact Mater2020;5:1113-26 PMCID:PMC7371600

[64]

Shi W,Liu L.Small extracellular vesicles from lipopolysaccharide-preconditioned dental follicle cells promote periodontal regeneration in an inflammatory microenvironment.ACS Biomater Sci Eng2020;6:5797-810

[65]

Liang L,Liao Z.High-yield nanovesicles extruded from dental follicle stem cells promote the regeneration of periodontal tissues as an alternative of exosomes.J Clin Periodontol2024;51:1395-407

[66]

Yi G,Ma Y.Matrix vesicles from dental follicle cells improve alveolar bone regeneration via activation of the PLC/PKC/MAPK pathway.Stem Cell Res Ther2022;13:41 PMCID:PMC8800263

[67]

Huang Y,Liu L,Guo S.Lipopolysaccharide-preconditioned dental follicle stem cells derived small extracellular vesicles treating periodontitis via reactive oxygen species/mitogen-activated protein kinase signaling-mediated antioxidant effect.Int J Nanomedicine2022;17:799-819 PMCID:PMC8882029

[68]

Liu L,Shi W.Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote periodontal regeneration.Tissue Eng Part A2021;27:962-76

[69]

Wu J,Wang R.Exosomes secreted by stem cells from human exfoliated deciduous teeth promote alveolar bone defect repair through the regulation of angiogenesis and osteogenesis.ACS Biomater Sci Eng2019;5:3561-71

[70]

Yu Y,Ying Q,Liu W.Synergistic effects of shed-derived exosomes, Cu2+, and an injectable hyaluronic acid hydrogel on antibacterial, anti-inflammatory, and osteogenic activity for periodontal bone regeneration.ACS Appl Mater Interfaces2024;16:33053-69

[71]

Zhou T,Wu P.Dental follicle cells: roles in development and beyond.Stem Cells Int2019;2019:9159605 PMCID:PMC6766151

[72]

Yuan X,Yang Z.Recent advances in 3D printing of smart scaffolds for bone tissue engineering and regeneration.Adv Mater2024;36:e2403641

[73]

Esser TU,Muenzebrock KA.Direct 3D-bioprinting of hiPSC-derived cardiomyocytes to generate functional cardiac tissues.Adv Mater2023;35:e2305911

[74]

Nie R,Lv H.3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models.Nanoscale2022;14:8112-29

[75]

Selvam S,Bhowmick T.Bioprinting of exosomes: prospects and challenges for clinical applications.Int J Bioprint2023;9:690 PMCID:PMC10195394

[76]

Heinrich MA,Jimenez A.3D bioprinting: from benches to translational applications.Small2019;15:e1805510

[77]

Moghaddam AS,Arjmand M.Review of bioprinting in regenerative medicine: naturally derived bioinks and stem cells.ACS Appl Bio Mater2021;4:4049-70

[78]

Ju Y,Yang P,Fang B.Extracellular vesicle-loaded hydrogels for tissue repair and regeneration.Mater Today Bio2023;18:100522 PMCID:PMC9803958

[79]

Liu L,Han Z.Extracellular vesicles-in-hydrogel (EViH) targeting pathophysiology for tissue repair.Bioact Mater2025;44:283-318 PMCID:PMC11539077

[80]

Jiang L,Jiang M.3D-printed multifunctional bilayer scaffold with sustained release of apoptotic extracellular vesicles and antibacterial coacervates for enhanced wound healing.Biomaterials2025;318:123196

[81]

Urciuolo A,Dong Y.Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures.Nat Commun2023;14:3128 PMCID:PMC10229611

[82]

Zhang YS,Hübscher T.3D extrusion bioprinting.Nat Rev Methods Primers2021;1:73

[83]

Xu T,Gregory C,Boland T.Inkjet printing of viable mammalian cells.Biomaterials2005;26:93-9

[84]

Hall GN,Viellerobe B.Laser-assisted bioprinting of targeted cartilaginous spheroids for high density bottom-up tissue engineering.Biofabrication2024;16:045029

[85]

Venkata Krishna D, Ravi Sankar M. Persuasive factors on the bioink printability and cell viability in the extrusion-based 3D bioprinting for tissue regeneration applications.Eng Regen2023;4:396-410

[86]

Rohde E,Gimona M.Manufacturing and characterization of extracellular vesicles from umbilical cord-derived mesenchymal stromal cells for clinical testing.Cytotherapy2019;21:581-92

[87]

Figueroa-Valdés AI,Herrera-Luna Y.Clinical-grade extracellular vesicles derived from umbilical cord mesenchymal stromal cells: preclinical development and first-in-human intra-articular validation as therapeutics for knee osteoarthritis.J Nanobiotechnology2025;23:13 PMCID:PMC11730155

[88]

Li B,Lin X.Hypoxia alters the proteome profile and enhances the angiogenic potential of dental pulp stem cell-derived exosomes.Biomolecules2022;12:575 PMCID:PMC9029684

[89]

Gorgun C,Lesage R.Dissecting the effects of preconditioning with inflammatory cytokines and hypoxia on the angiogenic potential of mesenchymal stromal cell (MSC)-derived soluble proteins and extracellular vesicles (EVs).Biomaterials2021;269:120633

[90]

Théry C,Aikawa E.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.J Extracell Vesicles2018;7:1535750 PMCID:PMC6322352

[91]

Busatto S,Ticer T.Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid.Cells2018;7:273 PMCID:PMC6315734

[92]

Visan KS,Ham S.Comparative analysis of tangential flow filtration and ultracentrifugation, both combined with subsequent size exclusion chromatography, for the isolation of small extracellular vesicles.J Extracell Vesicles2022;11:e12266 PMCID:PMC9486818

[93]

Corso G,Lee Y.Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography.Sci Rep2017;7:11561 PMCID:PMC5599601

[94]

Lo TW,Purcell E.Microfluidic device for high-throughput affinity-based isolation of extracellular vesicles.Lab Chip2020;20:1762-70 PMCID:PMC7328786

[95]

Wolf M,Ebner-Peking P.A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation.J Extracell Vesicles2022;11:e12207 PMCID:PMC8994701

[96]

Welsh JA, Goberdhan DCI, O’Driscoll L, et al; MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles. 2024;13:e12404. PMCID:PMC10850029

[97]

Comfort N,Bloomquist TR,Ferrante AW Jr .Nanoparticle tracking analysis for the quantification and size determination of extracellular vesicles.J Vis Exp2021;169:10.3791/62447 PMCID:PMC8243380

[98]

Bağcı C,Belder N,Erdener ŞE.Overview of extracellular vesicle characterization techniques and introduction to combined reflectance and fluorescence confocal microscopy to distinguish extracellular vesicle subpopulations.Neurophotonics2022;9:021903 PMCID:PMC8978261

[99]

Li G,Dong Y.Revisiting the nanoflow cytometric quantification of extracellular vesicles under the framework of ICH Q14 guidelines.J Extracell Biol2025;4:e70050 PMCID:PMC12060124

[100]

Görgens A,Hagey DW.Identification of storage conditions stabilizing extracellular vesicles preparations.J Extracell Vesicles2022;11:e12238 PMCID:PMC9206228

[101]

Elsharkasy OM,Hagey DW.Extracellular vesicles as drug delivery systems: why and how?.Adv Drug Deliv Rev2020;159:332-43

[102]

Raggatt LJ.Cellular and molecular mechanisms of bone remodeling.J Biol Chem2010;285:25103-8 PMCID:PMC2919071

[103]

Yue K,Alvarez MM,Annabi N.Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.Biomaterials2015;73:254-71 PMCID:PMC4610009

[104]

Liu W,Shu F.AntagomiR-192-5p-engineered exosomes encapsulated in MXene-modified GelMA hydrogel facilitated epithelization of burn wounds by targeting OLFM4.Bioact Mater2025;52:318-37 PMCID:PMC12198005

[105]

Golebiowska AA,Sathe VM,Nukavarapu SP.Decellularized extracellular matrix biomaterials for regenerative therapies: advances, challenges and clinical prospects.Bioact Mater2024;32:98-123 PMCID:PMC10622743

[106]

Shimomura K,Tuan RS.Region-specific effect of the decellularized meniscus extracellular matrix on mesenchymal stem cell-based meniscus tissue engineering.Am J Sports Med2017;45:604-11

[107]

Luo B,Xiong Y.Quaternized chitosan coated copper sulfide nanozyme with peroxidase-like activity for synergistic antibacteria and promoting infected wound healing.Int J Biol Macromol2023;246:125651

[108]

Bao F,Liu Y.Free or fixed state of nHAP differentially regulates hBMSC morphology and osteogenesis through the valve role of ITGA7.Bioact Mater2022;18:539-51 PMCID:PMC8980559

[109]

GhavamiNejad A,Wu XY.Crosslinking strategies for 3D bioprinting of polymeric hydrogels.Small2020;16:e2002931 PMCID:PMC7754762

[110]

Heidarian P,Kaynak A,Nasri-Nasrabadi B.Dynamic hydrogels and polymers as inks for three-dimensional printing.ACS Biomater Sci Eng2019;5:2688-707

[111]

Hu W,Xiao Y,Wang J.Advances in crosslinking strategies of biomedical hydrogels.Biomater Sci2019;7:843-55

[112]

Kong Y,Guan W.Tailoring the elasticity of nerve implants for regulating peripheral nerve regeneration.Smart Mater Med2023;4:266-85

[113]

Mei Q,Bei HP,Zhao X.3D bioprinting photo-crosslinkable hydrogels for bone and cartilage repair.Int J Bioprint2021;7:367 PMCID:PMC8287509

[114]

Zhang Q,Zhao M,Zhao X.Shedding light on 3D printing: printing photo-crosslinkable constructs for tissue engineering.Biomaterials2022;286:121566

[115]

Xue X,Wang S,Jiang Y.Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering.Bioact Mater2022;12:327-39 PMCID:PMC8784310

[116]

Xu H,Krishnamoorthy S.Effects of Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs.Biomed Mater2020;15:055021

[117]

Wang M,Schreyer DJ.Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering.Front Mater Sci2013;7:269-84

[118]

Schweizer S,Oliveira A,Colaço R.Physically crosslinked polyvinyl alcohol hydrogels as synthetic cartilage materials.Ann Med2021;53:S33

[119]

Nix C,Fillet M.Development of complementary analytical methods to characterize extracellular vesicles.Anal Chim Acta2024;1329:343171

[120]

Zarovni N,Brambilla D,Chiari M.Stoichiometric constraints for detection of EV-borne biomarkers in blood.J Extracell Vesicles2025;14:e70034 PMCID:PMC11791308

[121]

Raghav A.A systematic review on the modifications of extracellular vesicles: a revolutionized tool of nano-biotechnology.J Nanobiotechnology2021;19:459 PMCID:PMC8716303

[122]

Salunkhe S,Basak M,Mittal A.Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: strategies and significance.J Control Release2020;326:599-614

[123]

Zha Y,Lin T,Zhang S.Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects.Theranostics2021;11:397-409 PMCID:PMC7681080

[124]

de Souza Araújo IJ, Bottino MC. Biofabrication - revolutionizing the future of regenerative periodontics.Dent Mater2025;41:179-93

[125]

Golafshan N,Daghrery A.Composite graded melt electrowritten scaffolds for regeneration of the periodontal ligament-to-bone interface.ACS Appl Mater Interfaces2023;15:12735-49 PMCID:PMC11022588

[126]

Kouhi M,Asa’ad F.Recent advances in additive manufacturing of patient-specific devices for dental and maxillofacial rehabilitation.Dent Mater2024;40:700-15

[127]

van de Looij SM, de Jong OG, Vermonden T, Lorenowicz MJ. Injectable hydrogels for sustained delivery of extracellular vesicles in cartilage regeneration.J Control Release2023;355:685-708

[128]

Yáñez-Mó M,Andreu Z.Biological properties of extracellular vesicles and their physiological functions.J Extracell Vesicles2015;4:27066 PMCID:PMC4433489

[129]

Staruch RM,Rickard R,Butler PE.Injectable pore-forming hydrogel scaffolds for complex wound tissue engineering: designing and controlling their porosity and mechanical properties.Tissue Eng Part B Rev2017;23:183-98

[130]

Ali ASM,Bannach-Brown A.3D bioprinting of liver models: a systematic scoping review of methods, bioinks, and reporting quality.Mater Today Bio2024;26:100991 PMCID:PMC10978534

[131]

Watson DC,Bergamaschi C.Scalable, cGMP-compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL-15/lactadherin complexes.J Extracell Vesicles2018;7:1442088 PMCID:PMC5844027

[132]

Li M,Abhyankar S.Large-scale manufacturing of immunosuppressive extracellular vesicles for human clinical trials.Cytotherapy2025;27:1219-28

[133]

Li B,Huang C.A comprehensive review on the printing efficiency, precision, and cell viability in 3D bioprinting.Med Eng Phys2025;145:104448

[134]

Guida L,Levi M.Advancements in high-resolution 3D bioprinting: Exploring technological trends, bioinks and achieved resolutions.Bioprinting2024;44:e00376

AI Summary AI Mindmap
PDF

1

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/