Microfluidic devices for on-chip quantification of extracellular vesicles and associated biomarkers

Víctor Calero , Carlos Honrado , Alar Ainla , Daniela Macedo , Hugo Silva , Teresa Lage , Sara Abalde-Cela , Lorena Diéguez , María Carmen Blanco-López , Esther Serrano-Pertierra

Extracellular Vesicles and Circulating Nucleic Acids ›› 2025, Vol. 6 ›› Issue (3) : 560 -79.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2025, Vol. 6 ›› Issue (3) :560 -79. DOI: 10.20517/evcna.2025.10
review-article

Microfluidic devices for on-chip quantification of extracellular vesicles and associated biomarkers

Author information +
History +
PDF

Abstract

In the past decade, extracellular vesicles (EVs) have gained increasing attention in biomedical research. These membrane-bound particles are naturally secreted by cells under both physiological and pathological conditions, and they exhibit a wide range of sizes and molecular compositions. EVs transport bioactive molecules - such as proteins, nucleic acids, and lipids - making them ideal candidates for biomarker discovery. Consequently, their accurate characterization and quantification are critical for understanding their roles in intercellular communication and evaluating their potential in diagnostics, prognostics, disease monitoring, and therapeutic applications. Microfluidic technologies offer promising solutions for EV analysis, addressing key limitations of conventional methods by enabling precise and sensitive measurements with small sample volumes. While microfluidic devices have been predominantly used for EV separation and isolation, their application in EV quantification remains underexplored. Compared to traditional techniques like nanoparticle tracking analysis or flow cytometry, microfluidic systems can provide faster, more accessible alternatives for EV quantification. This review summarizes recent advances in microfluidic technologies for EV quantification, discussing their advantages, current limitations, and future prospects.

Keywords

Extracellular vesicles / microfluidics / on-chip quantification / molecular biomarkers / lab-on-a-chip / integrated sensing

Cite this article

Download citation ▾
Víctor Calero, Carlos Honrado, Alar Ainla, Daniela Macedo, Hugo Silva, Teresa Lage, Sara Abalde-Cela, Lorena Diéguez, María Carmen Blanco-López, Esther Serrano-Pertierra. Microfluidic devices for on-chip quantification of extracellular vesicles and associated biomarkers. Extracellular Vesicles and Circulating Nucleic Acids, 2025, 6(3): 560-79 DOI:10.20517/evcna.2025.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wolf P.The nature and significance of platelet products in human plasma.Br J Haematol1967;13:269-88

[2]

Crawford N.The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma.Br J Haematol1971;21:53-69

[3]

Nunez EA,Gershon MD.Secretory processes in follicular cells of the bat thyroid. 3. The occurrence of extracellular vesicles and colloid droplets during arousal from hibernation.Am J Anat1974;141:179-201

[4]

Roy S,Jones PS.Extracellular vesicles: the growth as diagnostics and therapeutics; a survey.J Extracell Vesicles2018;7:1438720 PMCID:PMC5827771

[5]

Ramirez MI,Gadelha C.Technical challenges of working with extracellular vesicles.Nanoscale2018;10:881-906

[6]

Welsh JA, Goberdhan DCI, O’Driscoll L, et al; MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles. 2024;13:e12404. PMCID:PMC10850029

[7]

Ferguson S,Weissleder R.Single extracellular vesicle analysis for early cancer detection.Trends Mol Med2022;28:681-92 PMCID:PMC9339504

[8]

Escola JM,Stoorvogel W,Yoshie O.Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes.J Biol Chem1998;273:20121-7

[9]

Hallal S,Grau GE,Alexander KL.Understanding the extracellular vesicle surface for clinical molecular biology.J Extracell Vesicles2022;11:e12260 PMCID:PMC9563386

[10]

Rupert DLM,Lässer C.Methods for the physical characterization and quantification of extracellular vesicles in biological samples.Biochim Biophys Acta Gen Subj2017;1861:3164-79

[11]

Whitesides GM.The origins and the future of microfluidics.Nature2006;442:368-73

[12]

Convery N.30 years of microfluidics.Micro Nano Eng2019;2:76-91

[13]

Gholizadeh S,Zarghooni M.Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: current status and future directions.Biosens Bioelectron2017;91:588-605 PMCID:PMC5323331

[14]

Su W,Chen W.Microfluidic strategies for label-free exosomes isolation and analysis.TrAC Trends Anal Chem2019;118:686-98

[15]

Chen M,Zhou C,Haick H.From conventional to microfluidic: progress in extracellular vesicle separation and individual characterization.Adv Healthc Mater2023;12:e2202437

[16]

Contreras-Naranjo JC,Ugaz VM.Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine.Lab Chip2017;17:3558-77 PMCID:PMC5656537

[17]

Ortega-sanchez FG,Widmann T.Microfluidic systems in extracellular vesicles single analysis. A systematic review.TrAC Trends Anal Chem2023;159:116920

[18]

Shao H,Castro CM,Weissleder R.New technologies for analysis of extracellular vesicles.Chem Rev2018;118:1917-50 PMCID:PMC6029891

[19]

Bjørge IM,Mano JF,Chrzanowski W.Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine - a new paradigm for tissue repair.Biomater Sci2017;6:60-78

[20]

Onukwugha NE,Nagrath S.Emerging micro-nanotechnologies for extracellular vesicles in immuno-oncology: from target specific isolations to immunomodulation.Lab Chip2022;22:3314-39 PMCID:PMC9474625

[21]

Min L,Bao H.Advanced nanotechnologies for extracellular vesicle-based liquid biopsy.Adv Sci2021;8:e2102789 PMCID:PMC8529441

[22]

Zhao Z,Hsu YS,Ning B.Extracellular vesicles as cancer liquid biopsies: from discovery, validation, to clinical application.Lab Chip2019;19:1114-40 PMCID:PMC6469512

[23]

Zhao W,Ye Y.Microsphere mediated exosome isolation and ultra-sensitive detection on a dielectrophoresis integrated microfluidic device.Analyst2021;146:5962-72

[24]

Yang Z,Shen H.Ultrasensitive single extracellular vesicle detection using high throughput droplet digital enzyme-linked immunosorbent assay.Nano Lett2022;22:4315-24 PMCID:PMC9593357

[25]

Lee K,Ghaddar B.Multiplexed profiling of single extracellular vesicles.ACS Nano2018;12:494-503 PMCID:PMC5898240

[26]

Paganini C,Kopp MRG.Rapid characterization and quantification of extracellular vesicles by fluorescence-based microfluidic diffusion sizing.Adv Healthc Mater2022;11:e2100021 PMCID:PMC11469030

[27]

Chen YS,Chen C,Lee GB.An integrated microfluidic system for on-chip enrichment and quantification of circulating extracellular vesicles from whole blood.Lab Chip2019;19:3305-15

[28]

Chen Y,Lai CP.Isolation and digital counting of extracellular vesicles from blood via membrane-integrated microfluidics.Sens Actuators B Chem2022;358:131473

[29]

Liu C,Li B.Single-exosome-counting immunoassays for cancer diagnostics.Nano Lett2018;18:4226-32

[30]

Walker SN,Dewey MJ.Rapid assessment of biomarkers on single extracellular vesicles using “catch and display” on ultrathin nanoporous silicon nitride membranes.Small2024;21:e2405505 PMCID:PMC11092443

[31]

Wu Q,Zhang C.Capturing nascent extracellular vesicles by metabolic glycan labeling-assisted microfluidics.Nat Commun2023;14:6541 PMCID:PMC10582105

[32]

Zhou S,Zhang F.Integrated microfluidic device for accurate extracellular vesicle quantification and protein markers analysis directly from human whole blood.Anal Chem2020;92:1574-81

[33]

Ji C,Wang X.Monolayer-fluorescence counting for ultrasensitive detection of tumour cell-derived extracellular vesicles using a step-wedge microfluidic platform.Sens Actuators B Chem2025;423:136786

[34]

Wang Y,Feng B,Chen X.Surface protein analysis of breast cancer exosomes using visualized strategy on centrifugal disk chip.Int J Biol Macromol2024;280:135651

[35]

Vaidyanathan R,Rauf S.Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing.Anal Chem2014;86:11125-32

[36]

Stollmann A,Hong JS.Molecular fingerprinting of biological nanoparticles with a label-free optofluidic platform.Nat Commun2024;15:4109 PMCID:PMC11096335

[37]

Cavallaro S,Hååg P.Label-free surface protein profiling of extracellular vesicles by an electrokinetic sensor.ACS Sens2019;4:1399-408

[38]

Cavallaro S,Sahu SS.Multiplexed electrokinetic sensor for detection and therapy monitoring of extracellular vesicles from liquid biopsies of non-small-cell lung cancer patients.Biosens Bioelectron2021;193:113568

[39]

Talebian Gevari M,Stridfeldt F.Design and optimization of a silicon-based electrokinetic microchip for sensitive detection of small extracellular vesicles.ACS Sens2024;9:2935-45 PMCID:PMC11217933

[40]

Kim S,Roh SM.Efficient exosome separation utilizing dielectrophoretic force in conductive spiral microfluidic chips and validation via a reduced graphene oxide (rGO)-based biosensor.Sens Actuators B Chem2024;404:135207

[41]

Wang Y,Sun M.A filter-electrochemical microfluidic chip for multiple surface protein analysis of exosomes to detect and classify breast cancer.Biosens Bioelectron2023;239:115590

[42]

Li M,Wu J.Highly efficient and label-free sensitive detection of tumor-derived exosome with an aptasensor-based microfluidic chip.Microchem J2024;203:110875

[43]

Qian Q,Xu Y.Microfluidic magnetic detection system combined with a DNA framework-mediated immune-sandwich assay for rapid and sensitive detection of tumor-derived exosomes.Microsyst Nanoeng2023;9:139 PMCID:PMC10630345

[44]

Wang J,Zhou Q.An integrated microfluidic-SERS platform enables sensitive phenotyping of serum extracellular vesicles in early stage melanomas.Adv Funct Mater2022;32:2010296

[45]

Zhou Q,Zhang Z.Glycan profiling in small extracellular vesicles with a SERS microfluidic biosensor identifies early malignant development in lung cancer.Adv Sci2024;11:e2401818 PMCID:PMC11434104

[46]

Ho KHW,Zhang R.SERS-based droplet microfluidic platform for sensitive and high-throughput detection of cancer exosomes.ACS Sens2024;9:4860-9

[47]

Hao N,Liu P.Acoustofluidics-assisted fluorescence-SERS bimodal biosensors.Small2020;16:e2005179 PMCID:PMC7902458

[48]

Friedrich R,Alizadehheidari M.A nano flow cytometer for single lipid vesicle analysis.Lab Chip2017;17:830-41

[49]

Gustafson KT,Heineck D.Automated fluorescence quantification of extracellular vesicles collected from blood plasma using dielectrophoresis.Lab Chip2021;21:1318-32

[50]

Ware JP,Nicholas SL,Riesterer JL.Recovery and analysis of bacterial membrane vesicle nanoparticles from human plasma using dielectrophoresis.Biosensors2024;14:456 PMCID:PMC11505931

[51]

Hong C,Ndukaife JC.Exosomes trapping, manipulation and size-based separation using opto-thermo-electrohydrodynamic tweezers.Nanoscale Adv2023;5:2973-8 PMCID:PMC10228344

[52]

Kim JS,Lee JY.High-throughput multi-gate microfluidic resistive pulse sensing for biological nanoparticle detection.Lab Chip2023;23:1945-53

[53]

Young TW,Hockaden NM,Jacobson SC.Characterization of extracellular vesicles by resistive-pulse sensing on in-plane multipore nanofluidic devices.Anal Chem2023;95:16710-6 PMCID:PMC10841850

[54]

Calado MRC,André DAM.Nanofluidic resistive pulse sensing for characterization of extracellular vesicles.Lab Chip2024;24:4028-38

[55]

Cimorelli M,Varga Z.Standardized procedure to measure the size distribution of extracellular vesicles together with other particles in biofluids with microfluidic resistive pulse sensing.PLoS One2021;16:e0249603 PMCID:PMC8016234

[56]

Jalali M,AbdelFatah T.Plasmonic nanobowtiefluidic device for sensitive detection of glioma extracellular vesicles by Raman spectrometry.Lab Chip2021;21:855-66

[57]

Li D,Huang Z,Liu G.Isolation and quantification of L1CAM-positive extracellular vesicles on a chip as a potential biomarker for Parkinson’s disease.J Extracell Vesicles2024;13:e12467 PMCID:PMC11186740

[58]

Ramshani Z,Richards K.Extracellular vesicle microRNA quantification from plasma using an integrated microfluidic device.Commun Biol2019;2:189 PMCID:PMC6527557

[59]

Sung CY,Chen YS,Lee GB.Isolation and quantification of extracellular vesicle-encapsulated microRNA on an integrated microfluidic platform.Lab Chip2021;21:4660-71

[60]

Cheng HL,Kuo WC.Detecting miRNA biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system.Lab Chip2018;18:2917-25

[61]

Zhang P,Lella D.Ultrasensitive quantification of tumor mRNAs in extracellular vesicles with an integrated microfluidic digital analysis chip.Lab Chip2018;18:3790-801 PMCID:PMC6310142

[62]

Ko J,Sheng K,Weissleder R.Sequencing-based protein analysis of single extracellular vesicles.ACS Nano2021;15:5631-8 PMCID:PMC8742254

[63]

Lin H,Guo J.Simultaneous detection of membrane protein and mRNA at single extracellular vesicle level by droplet microfluidics for cancer diagnosis.J Adv Res2024;Epub ahead of print:

[64]

Tong Z,Shen C.All-in-one multiple extracellular vesicle miRNA detection on a miniaturized digital microfluidic workstation.Biosens Bioelectron2025;270:116976

[65]

Reynolds DE,Yang J.Double digital assay for single extracellular vesicle and single molecule detection.Adv Sci2023;10:e2303619 PMCID:PMC10667851

[66]

Mahmoud AY,Aranda M.Will data analytics revolution finally bring SERS to the clinic?.TrAC Trends Anal Chem2023;169:117311

[67]

Scott SM.Fabrication methods for microfluidic devices: an overview.Micromachines2021;12:319 PMCID:PMC8002879

[68]

Van Deun J, Mestdagh P, Agostinis P, et al; EV-TRACK Consortium. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 2017;14:228-32.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/