The times they are AI-changing: AI-powered advances in the application of extracellular vesicles to liquid biopsy in breast cancer

Vanesa García-Barberán , María Elena Gómez Del Pulgar , Heidy M. Guamán , Alberto Benito-Martin

Extracellular Vesicles and Circulating Nucleic Acids ›› 2025, Vol. 6 ›› Issue (1) : 128 -40.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2025, Vol. 6 ›› Issue (1) :128 -40. DOI: 10.20517/evcna.2024.51
review-article

The times they are AI-changing: AI-powered advances in the application of extracellular vesicles to liquid biopsy in breast cancer

Author information +
History +
PDF

Abstract

Artificial intelligence (AI) is revolutionizing scientific research by facilitating a paradigm shift in data analysis and discovery. This transformation is characterized by a fundamental change in scientific methods and concepts due to AI’s ability to process vast datasets with unprecedented speed and accuracy. In breast cancer research, AI aids in early detection, prognosis, and personalized treatment strategies. Liquid biopsy, a noninvasive tool for detecting circulating tumor traits, could ideally benefit from AI’s analytical capabilities, enhancing the detection of minimal residual disease and improving treatment monitoring. Extracellular vesicles (EVs), which are key elements in cell communication and cancer progression, could be analyzed with AI to identify disease-specific biomarkers. AI combined with EV analysis promises an enhancement in diagnosis precision, aiding in early detection and treatment monitoring. Studies show that AI can differentiate cancer types and predict drug efficacy, exemplifying its potential in personalized medicine. Overall, the integration of AI in biomedical research and clinical practice promises significant changes and advancements in diagnostics, personalized medicine-based approaches, and our understanding of complex diseases like cancer.

Keywords

Extracellular vesicles / breast cancer / artificial intelligence / liquid biopsy

Cite this article

Download citation ▾
Vanesa García-Barberán, María Elena Gómez Del Pulgar, Heidy M. Guamán, Alberto Benito-Martin. The times they are AI-changing: AI-powered advances in the application of extracellular vesicles to liquid biopsy in breast cancer. Extracellular Vesicles and Circulating Nucleic Acids, 2025, 6(1): 128-40 DOI:10.20517/evcna.2024.51

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kuhn TS.The structure of scientific revolutions.Am J Phys1963;31:554-5

[2]

Yin J,Teo HH.Role of artificial intelligence applications in real-life clinical practice: systematic review.J Med Internet Res2021;23:e25759 PMCID:PMC8103304

[3]

Bhattamisra SK,Gupta P,Patra S.Artificial intelligence in pharmaceutical and healthcare research.BDCC2023;7:10

[4]

Nagendran M,Lovejoy CA.Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies.BMJ2020;368:m689 PMCID:PMC7190037

[5]

Mueller ST, Hoffman RR, Clancey W, Emrey A, Klein G. Explanation in human-AI systems: a literature meta-review, synopsis of key ideas and publications, and bibliography for explainable AI. arXiv 2019;arXiv:1902.01876. Available from https://arxiv.org/abs/1902.01876 [accessed 11 February 2025].

[6]

Greener JG,Moffat L.A guide to machine learning for biologists.Nat Rev Mol Cell Biol2022;23:40-55

[7]

Choi RY,Kalpathy-Cramer J,Campbell JP.Introduction to machine learning, neural networks, and deep learning.Transl Vis Sci Technol2020;9:14 PMCID:PMC7347027

[8]

Nayarisseri A,Tanwar P.Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery.Curr Drug Targets2021;22:631-55

[9]

Haug CJ.Artificial intelligence and machine learning in clinical medicine, 2023.N Engl J Med2023;388:1201-8

[10]

Tropsha A.Predictive QSAR modeling workflow, model applicability domains, and virtual screening.Curr Pharm Des2007;13:3494-504

[11]

Reker D,Kirtane AR.Computationally guided high-throughput design of self-assembling drug nanoparticles.Nat Nanotechnol2021;16:725-33 PMCID:PMC8197729

[12]

Tunyasuvunakool K,Wu Z.Highly accurate protein structure prediction for the human proteome.Nature2021;596:590-6 PMCID:PMC8387240

[13]

Cheng J,Pan J.Accurate proteome-wide missense variant effect prediction with AlphaMissense.Science2023;381:eadg7492

[14]

LeCun Y,Hinton G.Deep learning.Nature2015;521:436-44

[15]

Min S,Yoon S.Deep learning in bioinformatics.Brief Bioinform2017;18:851-69

[16]

Derry A,Altman N.Convolutional neural networks.Nat Methods2023;20:1269-70

[17]

Das S,Santos T,Banerjee I.Recurrent neural networks (RNNs): architectures, training tricks, and introduction to influential research. In: Colliot O, Editor. Machine learning for brain disorders. New York: Springer US; 2023. pp. 117-38.

[18]

Sahiner B,Petrick N.Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images.IEEE Trans Med Imaging1996;15:598-610

[19]

Dou B,Merkurjev E.Machine learning methods for small data challenges in molecular science.Chem Rev2023;123:8736-80 PMCID:PMC10999174

[20]

Alowais SA,Alsuhebany N.Revolutionizing healthcare: the role of artificial intelligence in clinical practice.BMC Med Educ2023;23:689 PMCID:PMC10517477

[21]

Li X,Islam MT,Xing L.Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis.IEEE Trans Med Imaging2020;39:4023-33

[22]

Shorfuzzaman M.MetaCOVID: a Siamese neural network framework with contrastive loss for n-shot diagnosis of COVID-19 patients.Pattern Recognit2021;113:107700 PMCID:PMC7568501

[23]

Fan DP,Ji GP.Inf-Net: automatic COVID-19 lung infection segmentation from CT images.IEEE Trans Med Imaging2020;39:2626-37

[24]

Swiderska-Chadaj Z,van Rijthoven M.Learning to detect lymphocytes in immunohistochemistry with deep learning.Med Image Anal2019;58:101547

[25]

Mei J,Xu G,Zhang H.SANet: a slice-aware network for pulmonary nodule detection.IEEE Trans Pattern Anal Mach Intell2022;44:4374-87

[26]

Esteva A,Novoa RA.Dermatologist-level classification of skin cancer with deep neural networks.Nature2017;542:115-8 PMCID:PMC8382232

[27]

McKinney SM,Godbole V.International evaluation of an AI system for breast cancer screening.Nature2020;577:89-94

[28]

Chan RC,Cheng KCT,Yan LLA.Artificial intelligence in breast cancer histopathology.Histopathology2023;82:198-210

[29]

Nomani A,Nasirpour MH,Pour ES.PSOWNNs-CNN: a computational radiology for breast cancer diagnosis improvement based on image processing using machine learning methods.Comput Intell Neurosci2022;2022:5667264 PMCID:PMC9117073

[30]

Zheng J,Gao Z,He M.Deep learning assisted efficient AdaBoost algorithm for breast cancer detection and early diagnosis.IEEE Access2020;8:96946-54

[31]

Loh PR,Bulik-Sullivan BK.Efficient Bayesian mixed-model analysis increases association power in large cohorts.Nat Genet2015;47:284-90 PMCID:PMC4342297

[32]

Lee SI,Drubin D.Learning a prior on regulatory potential from eQTL data.PLoS Genet2009;5:e1000358 PMCID:PMC2627940

[33]

Kircher M,Jain P,Cooper GM.A general framework for estimating the relative pathogenicity of human genetic variants.Nat Genet2014;46:310-5 PMCID:PMC3992975

[34]

Kanehisa M.KEGG: kyoto encyclopedia of genes and genomes.Nucleic Acids Res2000;28:27-30 PMCID:PMC102409

[35]

Ashburner M,Blake JA.Gene ontology: tool for the unification of biology. The gene ontology consortium.Nat Genet2000;25:25-9 PMCID:PMC3037419

[36]

Litjens G,Bejnordi BE.A survey on deep learning in medical image analysis.Med Image Anal2017;42:60-88

[37]

Breiman L.Random forests.Machine Learning2001;45:5-32

[38]

Camacho DM,Powers RK,Collins JJ.Next-generation machine learning for biological networks.Cell2018;173:1581-92

[39]

Li Y,Ding L,Pan Y.Deep learning in bioinformatics: introduction, application, and perspective in the big data era.Methods2019;166:4-21

[40]

Kavakiotis I,Salifoglou A,Vlahavas I.Machine learning and data mining methods in diabetes research.Comput Struct Biotechnol J2017;15:104-16 PMCID:PMC5257026

[41]

Ribeiro AH,Paixão GMM.Automatic diagnosis of the 12-lead ECG using a deep neural network.Nat Commun2020;11:1760 PMCID:PMC7145824

[42]

Hoshino A,Bojmar L.Extracellular vesicle and particle biomarkers define multiple human cancers.Cell2020;182:1044-61.e18 PMCID:PMC7522766

[43]

World Health Organization. Obesity and overweight. Available from https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight [accessed 11 February 2025].

[44]

Garcia-Closas M,Chatterjee N.Combined associations of genetic and environmental risk factors: implications for prevention of breast cancer.J Natl Cancer Inst2014;106:dju305 PMCID:PMC4271030

[45]

Dorling L, Carvalho S, Allen J, et al; Breast Cancer Association Consortium. Breast cancer risk genes - association analysis in more than 113,000 women. N Engl J Med. 2021;384:428-39. PMCID:PMC7611105

[46]

Dai X,Bai Z,Liu X.Breast cancer intrinsic subtype classification, clinical use and future trends.Am J Cancer Res2015;5:2929-43 PMCID:PMC4656721

[47]

Korde LA,Carey LA.Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline.J Clin Oncol2021;39:1485-505 PMCID:PMC8274745

[48]

Keup C,Kasimir-Bauer S.The diversity of liquid biopsies and their potential in breast cancer management.Cancers2023;15:5463 PMCID:PMC10670968

[49]

Munkácsy G,Győrffy B.Gene expression profiling in early breast cancer-patient stratification based on molecular and tumor microenvironment features.Biomedicines2022;10:248 PMCID:PMC8869155

[50]

Kalinsky K,Gralow JR.21-gene assay to inform chemotherapy benefit in node-positive breast cancer.N Engl J Med2021;385:2336-47 PMCID:PMC9096864

[51]

Yee D, DeMichele AM, Yau C, et al; I-SPY2 Trial Consortium. Association of event-free and distant recurrence-free survival with individual-level pathologic complete response in neoadjuvant treatment of stages 2 and 3 breast cancer: three-year follow-up analysis for the I-SPY2 adaptively randomized clinical trial. JAMA Oncol. 2020;6:1355-62. PMCID:PMC7378873

[52]

Arneth B.Update on the types and usage of liquid biopsies in the clinical setting: a systematic review.BMC Cancer2018;18:527 PMCID:PMC5935950

[53]

Li J,Wei J.Patient specific circulating tumor DNA fingerprints to monitor treatment response across multiple tumors.J Transl Med2020;18:293 PMCID:PMC7395971

[54]

Cescon DW,Parsons HA.Therapeutic targeting of minimal residual disease to prevent late recurrence in hormone-receptor positive breast cancer: challenges and new approaches.Front Oncol2021;11:667397 PMCID:PMC8867255

[55]

Parsons HA,Reed SC.Sensitive detection of minimal residual disease in patients treated for early-stage breast cancer.Clin Cancer Res2020;26:2556-64 PMCID:PMC7654718

[56]

Butler TM,Johnson-Camacho K.Circulating tumor DNA dynamics using patient-customized assays are associated with outcome in neoadjuvantly treated breast cancer.Cold Spring Harb Mol Case Stud2019;5:a003772 PMCID:PMC6549569

[57]

McDonald BR,Sammut SJ.Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer.Sci Transl Med2019;11:eaax7392 PMCID:PMC7236617

[58]

Li S,Liu J.Circulating tumor DNA predicts the response and prognosis in patients with early breast cancer receiving neoadjuvant chemotherapy.JCO Precis Oncol2020;4:PO.19.00292 PMCID:PMC7450928

[59]

Magbanua MJM,Wu HT.Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival.Ann Oncol2021;32:229-39 PMCID:PMC9348585

[60]

Hua H,Zhang J,Zhang T.AIEgen-deep: deep learning of single AIEgen-imaging pattern for cancer cell discrimination and preclinical diagnosis.Biosens Bioelectron2024;253:116086

[61]

Rashid MM.Advancing drug-response prediction using multi-modal and -omics machine learning integration (MOMLIN): a case study on breast cancer clinical data.Brief Bioinform2024;25:bbae300 PMCID:PMC11190965

[62]

Chen Q,Meng R.Modality-specific information disentanglement from multi-parametric MRI for breast tumor segmentation and computer-aided diagnosis.IEEE Trans Med Imaging2024;43:1958-71

[63]

Li J,Meng L.DeepTree: pathological image classification through imitating tree-like strategies of pathologists.IEEE Trans Med Imaging2024;43:1501-12

[64]

Liu Y,Dembrower K,Strand F.Use of an AI score combining cancer signs, masking, and risk to select patients for supplemental breast cancer screening.Radiology2024;311:e232535

[65]

Donnelly J,Barnett AJ.AsymMirai: interpretable mammography-based deep learning model for 1-5-year breast cancer risk prediction.Radiology2024;310:e232780

[66]

Hossain I,Fischer J,Burkholz R.Biologically informed NeuralODEs for genome-wide regulatory dynamics.Genome Biol2024;25:127 PMCID:PMC11106922

[67]

Xi Y,Deng F.Themis: advancing precision oncology through comprehensive molecular subtyping and optimization.Brief Bioinform2024;25:bbae261 PMCID:PMC11149663

[68]

Yao X,Lian Y.PheSeq, a Bayesian deep learning model to enhance and interpret the gene-disease association studies.Genome Med2024;16:56 PMCID:PMC11020195

[69]

Huang K,Yu Y,Song C.The impact of chemotherapy and survival prediction by machine learning in early Elderly Triple Negative Breast Cancer (eTNBC): a population based study from the SEER database.BMC Geriatr2022;22:268 PMCID:PMC8973884

[70]

Couch Y,Di Vizio D.A brief history of nearly EV-erything - the rise and rise of extracellular vesicles.J Extracell Vesicles2021;10:e12144 PMCID:PMC8681215

[71]

Wortzel I,Kenific CM.Exosome-mediated metastasis: communication from a distance.Dev Cell2019;49:347-60

[72]

Kahlert C,Protopopov A.Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer.J Biol Chem2014;289:3869-75 PMCID:PMC3924256

[73]

Vagner T,Minciacchi VR.Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma.J Extracell Vesicles2018;7:1505403 PMCID:PMC6084494

[74]

García-Romero N,Rackov G.Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation.J Transl Med2019;17:75 PMCID:PMC6419425

[75]

Che H,Jatsenko T,Vermeesch JR.Expanded knowledge of cell-free DNA biology: potential to broaden the clinical utility.Extracell Vesicles Circ Nucl Acids2022;3:216-34 PMCID:PMC11648412

[76]

Fais S,Borras FE.Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine.ACS Nano2016;10:3886-99

[77]

Hou C,Xu L.Exploiting the potential of extracellular vesicles as delivery vehicles for the treatment of melanoma.Front Bioeng Biotechnol2022;10:1054324 PMCID:PMC9714302

[78]

Tamura T,Sakamoto S,Ochiya T.Extracellular vesicles as a promising biomarker resource in liquid biopsy for cancer.Extracell Vesicles Circ Nucl Acids2021;2:148-74 PMCID:PMC11656527

[79]

González E.Cell-derived extracellular vesicles as a platform to identify low-invasive disease biomarkers.Expert Rev Mol Diagn2015;15:907-23

[80]

García-Romero N,Areal-Hidalgo P.BRAF V600E detection in liquid biopsies from pediatric central nervous system tumors.Cancers2019;12:66 PMCID:PMC7016762

[81]

García-Silva S,Sánchez-Redondo S.Use of extracellular vesicles from lymphatic drainage as surrogate markers of melanoma progression and BRAFV600E mutation.J Exp Med2019;216:1061-70 PMCID:PMC6504207

[82]

Greenberg ZF,He M.Towards artificial intelligence-enabled extracellular vesicle precision drug delivery.Adv Drug Deliv Rev2023;199:114974

[83]

Welsh JA, Goberdhan DCI, O’Driscoll L, et al; MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles. 2024;13:e12404. PMCID:PMC10850029

[84]

Li B,Kalluri R.A novel machine learning algorithm selects proteome signature to specifically identify cancer exosomes.Elife2024;12:RP90390 PMCID:PMC10965221

[85]

Wu KL,Reichel K.Automated detection of apoptotic bodies and cells in label-free time-lapse high-throughput video microscopy using deep convolutional neural networks.Bioinformatics2023;39:btad584 PMCID:PMC10563152

[86]

Luo HT,Tang J.Dissecting the multi-omics atlas of the exosomes released by human lung adenocarcinoma stem-like cells.NPJ Genom Med2021;6:48 PMCID:PMC8203745

[87]

Li X,Fan Y.Advanced nanoencapsulation-enabled ultrasensitive analysis: unraveling tumor extracellular vesicle subpopulations for differential diagnosis of hepatocellular carcinoma via DNA cascade reactions.ACS Nano2024;18:11389-403

[88]

Sheth D.Artificial intelligence in the interpretation of breast cancer on MRI.J Magn Reson Imaging2020;51:1310-24

[89]

Nicolis O,Taramasco C.A contemporary review of breast cancer risk factors and the role of artificial intelligence.Front Oncol2024;14:1356014 PMCID:PMC11063273

[90]

Le EPV,Huang Y,Gilbert FJ.Artificial intelligence in breast imaging.Clin Radiol2019;74:357-66

[91]

Balkenende L,Mann RM.Application of deep learning in breast cancer imaging.Semin Nucl Med2022;52:584-96

[92]

Mahichi H,Sohrabi MK.BreastCDNet: breast cancer detection neural network, classification and localization.

[93]

Ahn JS,Yang SA.Artificial intelligence in breast cancer diagnosis and personalized medicine.J Breast Cancer2023;26:405-35 PMCID:PMC10625863

[94]

Zhang XW,Liu MX.Deep learning promotes profiling of multiple miRNAs in single extracellular vesicles for cancer diagnosis.ACS Sens2024;9:1555-64

[95]

Zhang Y,Ogunlade B.From genotype to phenotype: raman spectroscopy and machine learning for label-free single-cell analysis.ACS Nano2024;18:18101-17

[96]

Kim J,Lee S.Deep learning-assisted monitoring of trastuzumab efficacy in HER2-overexpressing breast cancer via SERS immunoassays of tumor-derived urinary exosomal biomarkers.Biosens Bioelectron2024;258:116347

[97]

Zhuang Y,Ding L.Source tracing of kidney injury via the multispectral fingerprint identified by machine learning-driven surface-enhanced raman spectroscopic analysis.ACS Sens2024;9:2622-33

[98]

Xie Y,Wen Y,Li M.Artificial Intelligent label-free SERS profiling of serum exosomes for breast cancer diagnosis and postoperative assessment.Nano Lett2022;22:7910-8

[99]

Elendu C,Elendu TC.Ethical implications of AI and robotics in healthcare: a review.Medicine2023;102:e36671 PMCID:PMC10727550

[100]

Carter SM,Win KT,Richards B.The ethical, legal and social implications of using artificial intelligence systems in breast cancer care.Breast2020;49:25-32 PMCID:PMC7375671

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/