Substrate stiffness modulates extracellular vesicles’ release in a triple-negative breast cancer model

Beatrice Senigagliesi , Otmar Geiss , Stefano Valente , Hendrik Vondracek , Nicola Cefarin , Giacomo Ceccone , Luigi Calzolai , Laura Ballerini , Pietro Parisse , Loredana Casalis

Extracellular Vesicles and Circulating Nucleic Acids ›› 2024, Vol. 5 ›› Issue (3) : 553 -68.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2024, Vol. 5 ›› Issue (3) :553 -68. DOI: 10.20517/evcna.2024.47
Original Article

Substrate stiffness modulates extracellular vesicles’ release in a triple-negative breast cancer model

Author information +
History +
PDF

Abstract

Aim: The microenvironment effect on the tumoral-derived Extracellular Vesicle release, which is of significant interest for biomedical applications, still represents a rather unexplored field. The aim of the present work is to investigate the interrelation between extracellular matrix (ECM) stiffness and the release of small EVs from cancer cells. Here, we focus on the interrelation between the ECM and small extracellular vesicles (sEVs), specifically investigating the unexplored aspect of the influence of ECM stiffness on the release of sEVs.

Methods: We used a well-studied metastatic Triple-Negative Breast Cancer (TNBC) cell line, MDA-MB-231, as a model to study the release of sEVs by cells cultured on substrates of different stiffness. We have grown MDA-MB-231 cells on two collagen-coated polydimethylsiloxane (PDMS) substrates at different stiffness (0.2 and 3.6 MPa), comparing them with a hard glass substrate as control, and then we isolated the respective sEVs by differential ultracentrifugation. After checking the cell growth conditions [vitality, morphology by immunofluorescence microscopy, stiffness by atomic force microscopy (AFM)], we took advantage of a multi-parametric approach based on complementary techniques (AFM, Nanoparticle Tracking Analysis, and asymmetric flow field flow fractionation with a multi-angle light scattering detector) to characterize the TNBC-derived sEV obtained in the different substrate conditions.

Results: We observe that soft substrates induce TNBC cell softening and rounding. This effect promotes the release of a high number of larger sEVs.

Conclusion: Here, we show the role of ECM physical properties in the regulation of sEV release in a TNBC model. While the molecular mechanisms regulating this effect need further investigation, our report represents a step toward an improved understanding of ECM-cell-sEVs crosstalk.

Keywords

Cancer-derived extracellular vesicles / mechano-transduction / atomic force microscopy / nanoparticle tracking analysis / asymmetric flow field flow fractionation-multi-angle light scattering

Cite this article

Download citation ▾
Beatrice Senigagliesi, Otmar Geiss, Stefano Valente, Hendrik Vondracek, Nicola Cefarin, Giacomo Ceccone, Luigi Calzolai, Laura Ballerini, Pietro Parisse, Loredana Casalis. Substrate stiffness modulates extracellular vesicles’ release in a triple-negative breast cancer model. Extracellular Vesicles and Circulating Nucleic Acids, 2024, 5(3): 553-68 DOI:10.20517/evcna.2024.47

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tschuschke M,Bryja A.Inclusion biogenesis, methods of isolation and clinical application of human cellular exosomes.J Clin Med2020;9:436 PMCID:PMC7074492

[2]

Théry C,Aikawa E.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines.J Extracell Vesicles2018;7:1535750 PMCID:PMC6322352

[3]

An T,Xu Y.Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis.J Extracell Vesicles2015;4:27522 PMCID:PMC4475684

[4]

Malm T,Kanninen KM.Exosomes in Alzheimer’s disease.Neurochem Int2016;97:193-9

[5]

Castaño C,Párrizas M.Exosomes and diabetes.Diabetes Metab Res Rev2019;35:e3107

[6]

Di H,Zhang P.General approach to engineering extracellular vesicles for biomedical analysis.Anal Chem2019;91:12752-9

[7]

Fais S,Borras FE.Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine.ACS Nano2016;10:3886-99

[8]

Zebrowska A,Whiteside T.Signaling of tumor-derived sEV impacts melanoma progression.Int J Mol Sci2020;21:5066 PMCID:PMC7404104

[9]

Keller S,Rupp AK,Altevogt P.Body fluid derived exosomes as a novel template for clinical diagnostics.J Transl Med2011;9:86 PMCID:PMC3118335

[10]

Yeo W.Treatment horizons for triple-negative breast cancer.Hong Kong J Radiol2015;18:111-8

[11]

Shang M,Pei Y,Chang J.Potential management of circulating tumor DNA as a biomarker in triple-negative breast cancer.J Cancer2018;9:4627-34 PMCID:PMC6299380

[12]

Nakashoji A,Nagayama A,Sasahara M.Clinical predictors of pathological complete response to neoadjuvant chemotherapy in triple-negative breast cancer.Oncol Lett2017;14:4135-41 PMCID:PMC5604131

[13]

Jhan JR.Triple-negative breast cancer and the potential for targeted therapy.Pharmacogenomics2017;18:1595-609 PMCID:PMC5694022

[14]

Green TM,Barsky SH,Lorico A.Breast cancer-derived extracellular vesicles: characterization and contribution to the metastatic phenotype.Biomed Res Int2015;2015:634865 PMCID:PMC4639645

[15]

Goh CY,Ho M.Exosomes in triple negative breast cancer: garbage disposals or trojan horses?.Cancer Lett2020;473:90-7

[16]

Abhange K,Wen Y.Small extracellular vesicles in cancer.Bioact Mater2021;6:3705-43 PMCID:PMC8056276

[17]

Lopez K,Lopez Gonzalez EJ,Shuck SC.Extracellular vesicles: a dive into their role in the tumor microenvironment and cancer progression.Front Cell Dev Biol2023;11:1154576 PMCID:PMC10071009

[18]

Brena D,Bond V.Extracellular vesicle-mediated transport: reprogramming a tumor microenvironment conducive with breast cancer progression and metastasis.Transl Oncol2022;15:101286 PMCID:PMC8636863

[19]

Hinshaw DC.The tumor microenvironment innately modulates cancer progression.Cancer Res2019;79:4557-66 PMCID:PMC6744958

[20]

Soysal SD,Muenst SE.Role of the tumor microenvironment in breast cancer.Pathobiology2015;82:142-52

[21]

Mierke CT.Phenotypic heterogeneity, bidirectionality, universal cues, plasticity, mechanics, and the tumor microenvironment drive cancer metastasis.Biomolecules2024;14:184 PMCID:PMC10887446

[22]

Poltavets V,Pitson SM.The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity.Front Oncol2018;8:431 PMCID:PMC6189298

[23]

Imodoye SO,Bello IO.From complexity to clarity: unravelling tumor heterogeneity through the lens of tumor microenvironment for innovative cancer therapy.Histochem Cell Biol2024;161:299-323

[24]

Slepicka PF,Dos Santos CO.The molecular basis of mammary gland development and epithelial differentiation.Semin Cell Dev Biol2021;114:93-112 PMCID:PMC8052380

[25]

Trappmann B,Connelly JT.Extracellular-matrix tethering regulates stem-cell fate.Nat Mater2012;11:642-9

[26]

Alexander NR,Parekh A.Extracellular matrix rigidity promotes invadopodia activity.Curr Biol2008;18:1295-9 PMCID:PMC2555969

[27]

Seewaldt V.ECM stiffness paves the way for tumor cells.Nat Med2014;20:332-3

[28]

Mah EJ,McGahey GE,Digman MA.Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility.Sci Rep2018;8:17094 PMCID:PMC6244401

[29]

Liang R.Matrix stiffness-driven cancer progression and the targeted therapeutic strategy.Mechanobiology in Medicine2023;1:100013

[30]

Lee JN,Ryan D.Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane).Langmuir2004;20:11684-91

[31]

Goli-Malekabadi Z,Tamayol A.Time dependency of morphological remodeling of endothelial cells in response to substrate stiffness.Bioimpacts2017;7:41-7 PMCID:PMC5439388

[32]

Wu B,Guan L.Stiff matrix induces exosome secretion to promote tumour growth.Nat Cell Biol2023;25:415-24 PMCID:PMC10351222

[33]

Kornilov R,Mannerström B.Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum.J Extracell Vesicles2018;7:1422674 PMCID:PMC5795649

[34]

Kim SO,Okajima T.Mechanical properties of paraformaldehyde-treated individual cells investigated by atomic force microscopy and scanning ion conductance microscopy.Nano Converg2017;4:5 PMCID:PMC5359366

[35]

Grimm KB,Fels J.Fixed endothelial cells exhibit physiologically relevant nanomechanics of the cortical actin web.Nanotechnology2014;25:215101

[36]

Hermanowicz P,Burda K.AtomicJ: an open source software for analysis of force curves.Rev Sci Instrum2014;85:063703

[37]

Chen WH,Tzen JT,Lin YW.Probing relevant molecules in modulating the neurite outgrowth of hippocampal neurons on substrates of different stiffness.PLoS One2013;8:e83394 PMCID:PMC3875460

[38]

Ansardamavandi A,Shokrgozar MA.Behavioral remodeling of normal and cancerous epithelial cell lines with differing invasion potential induced by substrate elastic modulus.Cell Adh Migr2018;12:472-88 PMCID:PMC6363025

[39]

Azadi S,Soleimani M.Modulating cancer cell mechanics and actin cytoskeleton structure by chemical and mechanical stimulations.J Biomed Mater Res A2019;107:1569-81

[40]

Gil-Redondo JC,Zbiral B,Toca-Herrera JL.Substrate stiffness modulates the viscoelastic properties of MCF-7 cells.J Mech Behav Biomed Mater2022;125:104979

[41]

Wala J.Mapping of biomechanical properties of cell lines on altered matrix stiffness using atomic force microscopy.Biomech Model Mechanobiol2020;19:1523-36

[42]

Senigagliesi B,Cefarin N.Triple negative breast cancer-derived small extracellular vesicles as modulator of biomechanics in target cells.Nanomedicine2022;44:102582

[43]

Calzolai L,Garcìa CP.Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation.J Chromatogr A2011;1218:4234-9

[44]

Vogel R,Muzard J.Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: who is up to the challenge?.J Extracell Vesicles2021;10:e12052 PMCID:PMC7804049

[45]

Simon CG Jr,Calzolai L.Orthogonal and complementary measurements of properties of drug products containing nanomaterials.J Control Release2023;354:120-7

[46]

Shen J,Zhang F.AFM tip-sample convolution effects for cylinder protrusions.Appl. Surf. Sci.2017;422:482-91

[47]

Bachurski D,Nguyen PH.Extracellular vesicle measurements with nanoparticle tracking analysis - an accuracy and repeatability comparison between NanoSight NS300 and ZetaView.J Extracell Vesicles2019;8:1596016 PMCID:PMC6450530

[48]

Gardiner C,Dragovic RA,Sargent IL.Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis.J Extracell Vesicles2013;2 PMCID:PMC3760643

[49]

Jarzębski M,Białopiotrowicz T,Kościński J.Particle tracking analysis in food and hydrocolloids investigations.Food Hydrocolloids2017;68:90-101

[50]

Filipe V,Jiskoot W.Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates.Pharm Res2010;27:796-810 PMCID:PMC2852530

[51]

Khatun Z,Sharma S.Elucidating diversity of exosomes: biophysical and molecular characterization methods.Nanomedicine (Lond)2016;11:2359-77

[52]

Eskelin K,Oksanen HM.Asymmetrical flow field-flow fractionation on virus and virus-like particle applications.Microorganisms2019;7:555 PMCID:PMC6921026

[53]

Zhang H.Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization.Nat Protoc2019;14:1027-53 PMCID:PMC6733524

[54]

Bavli Y,Chen BM.Doxebo (doxorubicin-free Doxil-like liposomes) is safe to use as a pre-treatment to prevent infusion reactions to PEGylated nanodrugs.J Control Release2019;306:138-48

[55]

El-Tanani M,Babiker R.Unraveling the tumor microenvironment: insights into cancer metastasis and therapeutic strategies.Cancer Lett2024;591:216894

[56]

Cox TR.The matrix in cancer.Nat Rev Cancer2021;21:217-38

[57]

Liu C,Dong ZX.Heterogeneous microenvironmental stiffness regulates pro-metastatic functions of breast cancer cells.Acta Biomater2021;131:326-40 PMCID:PMC8784164

[58]

Jaalouk DE.Mechanotransduction gone awry.Nat Rev Mol Cell Biol2009;10:63-73 PMCID:PMC2668954

[59]

Parsons JT,Schwartz MA.Cell adhesion: integrating cytoskeletal dynamics and cellular tension.Nat Rev Mol Cell Biol2010;11:633-43 PMCID:PMC2992881

[60]

Iskratsch T,Sheetz MP.Appreciating force and shape—the rise of mechanotransduction in cell biology.Nat Rev Mol Cell Biol2014;15:825-33 PMCID:PMC9339222

[61]

Taufalele PV,Simmons AJ.Matrix stiffness enhances cancer-macrophage interactions and M2-like macrophage accumulation in the breast tumor microenvironment.Acta Biomater2023;163:365-77 PMCID:PMC9592676

[62]

Lekka M.Discrimination between normal and cancerous cells using AFM.Bionanoscience2016;6:65-80 PMCID:PMC4778153

[63]

Senigagliesi B,Birarda G.Subcellular elements responsive to the biomechanical activity of triple-negative breast cancer-derived small extracellular vesicles.Biomol Concepts2022;13:322-33

[64]

Liu T,Li D,Zhang Y.Cancer-associated fibroblasts build and secure the tumor microenvironment.Front Cell Dev Biol2019;7:60 PMCID:PMC6492564

[65]

Webber JP,Sanders AJ.Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes.Oncogene2015;34:290-302

[66]

Jiang T,Yu S.Untangling the response of bone tumor cells and bone forming cells to matrix stiffness and adhesion ligand density by means of hydrogels.Biomaterials2019;188:130-43 PMCID:PMC6279509

[67]

Abidine Y,Laurent VM.Mechanosensitivity of cancer cells in contact with soft substrates using AFM.Biophys J2018;114:1165-75 PMCID:PMC5883622

[68]

Discher DE,Wang YL.Tissue cells feel and respond to the stiffness of their substrate.Science2005;310:1139-43

[69]

Sedgwick AE,Olivia Balmert M.Extracellular microvesicles and invadopodia mediate non-overlapping modes of tumor cell invasion.Sci Rep2015;5:14748 PMCID:PMC4602187

[70]

Yousafzai MS,Bonin S,Scoles G.Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers.J Biomech2017;60:266-9

[71]

Kristal-muscal R,Weihs D.Metastatic cancer cells tenaciously indent impenetrable, soft substrates.New J Phys2013;15:035022

[72]

Yamaguchi N.Focal adhesion-mediated cell anchoring and migration: from in vitro to in vivo.Development2022;149:dev200647 PMCID:PMC9188754

[73]

Gurung S,Touramanidou L.The exosome journey: from biogenesis to uptake and intracellular signalling.Cell Commun Signal2021;19:47 PMCID:PMC8063428

[74]

Ge H,Pei Q,Pei H.Extracellular matrix stiffness: new areas affecting cell metabolism.Front Oncol2021;11:631991 PMCID:PMC7943852

[75]

Wells RG.Tissue mechanics and fibrosis.Biochim Biophys Acta2013;1832:884-90 PMCID:PMC3641165

[76]

Franchi M,Karamanos KA,Masola V.Extracellular matrix-mediated breast cancer cells morphological alterations, invasiveness, and microvesicles/exosomes release.Cells2020;9:2031 PMCID:PMC7564980

AI Summary AI Mindmap
PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/