Transfer of miR-100 and miR-125b increases 3D growth and invasiveness in recipient cancer cells

Hannah M. Nelson , Shimian Qu , Liyu Huang , Muhammad Shameer , Kevin C. Corn , Sydney N. Chapman , Nicole L. Luthcke , Sara A. Schuster , Tellie D. Stamaris , Lauren A. Turnbull , Lucas L. Guy , Xiao Liu , Danielle L. Michell , Elizabeth M. Semler , Kasey C. Vickers , Qi Liu , Jeffrey L. Franklin , Alissa M. Weaver , Marjan Rafat , Robert J. Coffey , James G. Patton

Extracellular Vesicles and Circulating Nucleic Acids ›› 2024, Vol. 5 ›› Issue (3) : 397 -416.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2024, Vol. 5 ›› Issue (3) :397 -416. DOI: 10.20517/evcna.2024.43
Original Article

Transfer of miR-100 and miR-125b increases 3D growth and invasiveness in recipient cancer cells

Author information +
History +
PDF

Abstract

Aim: Extracellular communication via the transfer of vesicles and nanoparticles is now recognized to play an important role in tumor microenvironment interactions. Cancer cells upregulate and secrete abundant levels of miR-100 and miR-125b that can alter gene expression in donor and recipient cells. In this study, we sought to identify targets of miR-100 and miR-125b and conclusively demonstrate that microRNAs (miRNAs) can be functionally transferred from donor to recipient cells.

Methods: To identify targets of miR-100 and miR-125b, we used bioinformatic approaches comparing multiple colorectal cancer (CRC) cell lines, including knockout lines lacking one or both of these miRNAs. We also used spheroid and 3D growth conditions in collagen to test colony growth and invasiveness. We also used Transwell co-culture systems to demonstrate functional miRNA transfer.

Results: From an initial list of 96 potential mRNA targets, we identified and tested 15 targets, with 8 showing significant downregulation in the presence of miR-100 and miR-125b. Among these, cingulin (CGN) and protein tyrosine phosphatase receptor type-R (PTPRR) are downregulated in multiple cancers, consistent with regulation by increased levels of miR-100 and miR-125b. We also show that increased cellular levels of miR-100 and miR-125b enhance 3D growth and invasiveness in CRC and glioblastoma cell lines. Lastly, we demonstrate that extracellular transfer of miR-100 and miR-125b can silence both reporter and endogenous mRNA targets in recipient cells and also increase the invasiveness of recipient spheroid colonies when grown under 3D conditions in type I collagen.

Conclusion:miR-100 and miR-125b target multiple mRNAs that can regulate 3D cell-autonomous growth and invasiveness. By extracellular transfer, miR-100 and miR-125b can also increase colony growth and invasiveness in recipient cells through non-cell-autonomous mechanisms.

Keywords

miRNA / miR-100 / miR-125b / colorectal cancer / cingulin / invasiveness / tight junctions

Cite this article

Download citation ▾
Hannah M. Nelson, Shimian Qu, Liyu Huang, Muhammad Shameer, Kevin C. Corn, Sydney N. Chapman, Nicole L. Luthcke, Sara A. Schuster, Tellie D. Stamaris, Lauren A. Turnbull, Lucas L. Guy, Xiao Liu, Danielle L. Michell, Elizabeth M. Semler, Kasey C. Vickers, Qi Liu, Jeffrey L. Franklin, Alissa M. Weaver, Marjan Rafat, Robert J. Coffey, James G. Patton. Transfer of miR-100 and miR-125b increases 3D growth and invasiveness in recipient cancer cells. Extracellular Vesicles and Circulating Nucleic Acids, 2024, 5(3): 397-416 DOI:10.20517/evcna.2024.43

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He L.MicroRNAs: small RNAs with a big role in gene regulation.Nat Rev Genet2004;5:522-31

[2]

Krol J,Filipowicz W.The widespread regulation of microRNA biogenesis, function and decay.Nat Rev Genet2010;11:597-610

[3]

Peng Y.The role of MicroRNAs in human cancer.Signal Transduct Target Ther2016;1:15004 PMCID:PMC5661652

[4]

Cha DJ,Dou Y.KRAS-dependent sorting of miRNA to exosomes.Elife2015;4:e07197 PMCID:PMC4510696

[5]

Qin C,Wang ZX.Potential role of miR-100 in cancer diagnosis, prognosis, and therapy.Tumour Biol2015;36:1403-9

[6]

Peng B,Le MTN.Essential functions of miR-125b in cancer.Cell Prolif2021;54:e12913 PMCID:PMC7848968

[7]

Liu H,Sun L.Interaction of lncRNA MIR100HG with hnRNPA2B1 facilitates m6A-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression.Mol Cancer2022;21:74 PMCID:PMC8917698

[8]

Lu Y,Liu Q.lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling.Nat Med2017;23:1331-41 PMCID:PMC5961502

[9]

Zhang X,Han YN.miR-125b promotes colorectal cancer migration and invasion by dual-targeting CFTR and CGN.Cancers2021;13:5710 PMCID:PMC8616371

[10]

Emmrich S,Schmidt F,Reinhardt D.LincRNAs MONC and MIR100HG act as oncogenes in acute megakaryoblastic leukemia.Mol Cancer2014;13:171 PMCID:PMC4118279

[11]

Ottaviani S,Frampton AE.TGF-β induces miR-100 and miR-125b but blocks let-7a through LIN28B controlling PDAC progression.Nat Commun2018;9:1845 PMCID:PMC5945639

[12]

Bartel DP.MicroRNAs: target recognition and regulatory functions.Cell2009;136:215-33 PMCID:PMC3794896

[13]

Li N,Kim HR,Patton JG.Dispatched Homolog 2 is targeted by miR-214 through a combination of three weak microRNA recognition sites.Nucleic Acids Res2008;36:4277-85 PMCID:PMC2490740

[14]

Riolo G,Marzocchi C.miRNA targets: from prediction tools to experimental validation.Methods Protoc2020;4:1 PMCID:PMC7839038

[15]

Couch Y,Di Vizio D.A brief history of nearly EV-erything - The rise and rise of extracellular vesicles.J Extracell Vesicles2021;10:e12144 PMCID:PMC8681215

[16]

Dixson AC,Di Vizio D.Context-specific regulation of extracellular vesicle biogenesis and cargo selection.Nat Rev Mol Cell Biol2023;24:454-76 PMCID:PMC10330318

[17]

O'Brien K,Ughetto S,Breakefield XO.RNA delivery by extracellular vesicles in mammalian cells and its applications.Nat Rev Mol Cell Biol2020;21:585-606 PMCID:PMC7249041

[18]

Gruner HN.Examining the evidence for extracellular RNA function in mammals.Nat Rev Genet2021;22:448-58

[19]

Kabadi AM,Hilton IB.Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector.Nucleic Acids Res2014;42:e147 PMCID:PMC4231726

[20]

Jeppesen DK,Franklin JL.Reassessment of exosome composition.Cell2019;177:428-45.e18 PMCID:PMC6664447

[21]

Allen RM,Ramirez Solano MA.Bioinformatic analysis of endogenous and exogenous small RNAs on lipoproteins.J Extracell Vesicles2018;7:1506198 PMCID:PMC6095027

[22]

Martin M.Cutadapt removes adapter sequences from high-throughput sequencing reads.EMBnet j2011;17:10

[23]

Langmead B.Fast gapped-read alignment with Bowtie 2.Nat Methods2012;9:357-9 PMCID:PMC3322381

[24]

Dobin A,Schlesinger F.STAR: ultrafast universal RNA-seq aligner.Bioinformatics2013;29:15-21 PMCID:PMC3530905

[25]

Liao Y,Shi W.featureCounts: an efficient general purpose program for assigning sequence reads to genomic features.Bioinformatics2014;30:923-30

[26]

Zhao S,Sheng Q.Advanced heat map and clustering analysis using heatmap3.Biomed Res Int2014;2014:986048 PMCID:PMC4124803

[27]

Love MI,Anders S.Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol2014;15:550 PMCID:PMC4302049

[28]

Wang J,Shi Z,Zhang B.WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit.Nucleic Acids Res2017;45:W130-7 PMCID:PMC5570149

[29]

Subramanian A,Mootha VK.Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.Proc Natl Acad Sci U S A2005;102:15545-50 PMCID:PMC1239896

[30]

Aebi M,Padgett RA,Weissmann C.Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA.Cell1986;47:555-65

[31]

Schindelin J,Frise E.Fiji: an open-source platform for biological-image analysis.Nat Methods2012;9:676-82 PMCID:PMC3855844

[32]

Carey SP,McGregor AL.Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model.Clin Exp Metastasis2013;30:615-30 PMCID:PMC3646083

[33]

Müller M,Ciaudo C.Argonaute proteins: from structure to function in development and pathological cell fate determination.Front Cell Dev Biol2019;7:360 PMCID:PMC6987405

[34]

Cenik ES.Argonaute proteins.Curr Biol2011;21:R446-9

[35]

Farazi TA,Tuschl T.The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members.Development2008;135:1201-14

[36]

Liu J,Rivas FV.Argonaute2 is the catalytic engine of mammalian RNAi.Science2004;305:1437-41

[37]

Ge SX,Yao R.ShinyGO: a graphical gene-set enrichment tool for animals and plants.Bioinformatics2020;36:2628-9 PMCID:PMC7178415

[38]

Li C,Zhang K.Multiple roles of microRNA-100 in human cancer and its therapeutic potential.Cell Physiol Biochem2015;37:2143-59

[39]

Wang Y,Jiang Y.The emerging roles of miR-125b in cancers.Cancer Manag Res2020;12:1079-88 PMCID:PMC7024862

[40]

Vallacchi V.miR-100 and miR-125b regulate epithelial-mesenchymal transition and drug resistance in tumors.Non-coding RNA Investig2018;2:57

[41]

Citi S,Jakes R,Kendrick-Jones J.Cingulin, a new peripheral component of tight junctions.Nature1988;333:272-6

[42]

Guillemot L.Cingulin regulates claudin-2 expression and cell proliferation through the small GTPase RhoA.Mol Biol Cell2006;17:3569-77 PMCID:PMC1525245

[43]

Mangan AJ,Li D,Citi S.Cingulin and actin mediate midbody-dependent apical lumen formation during polarization of epithelial cells.Nat Commun2016;7:12426 PMCID:PMC4976216

[44]

Schossleitner K,Gröger M.Evidence that cingulin regulates endothelial barrier function in vitro and in vivo.Arterioscler Thromb Vasc Biol2016;36:647-54

[45]

Diserens AC,Martin-Achard A,Schnegg JF.Characterization of an established human malignant glioma cell line: LN-18.Acta Neuropathol1981;53:21-8

[46]

Abner JJ,Clement MA.Depletion of METTL3 alters cellular and extracellular levels of miRNAs containing m6A consensus sequences.Heliyon2021;7:e08519 PMCID:PMC8654799

[47]

Zhang Q,Jeppesen DK.Transfer of functional cargo in exomeres.Cell Rep2019;27:940-54.e6 PMCID:PMC6559347

[48]

Zhang Q,Higginbotham JN.Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets.Nat Cell Biol2021;23:1240-54 PMCID:PMC8656144

[49]

Mittelbrunn M,Villarroya-Beltri C.Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells.Nat Commun2011;2:282 PMCID:PMC3104548

[50]

Valadi H,Bossios A,Lee JJ.Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Nat Cell Biol2007;9:654-9

[51]

Skog J,van Rijn S.Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers.Nat Cell Biol2008;10:1470-6 PMCID:PMC3423894

[52]

Boelens MC,Nabet BY.Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways.Cell2014;159:499-513 PMCID:PMC4283810

[53]

Squadrito ML,Burdet F.Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells.Cell Rep2014;8:1432-46

[54]

Barman B,Krystofiak E.VAP-A and its binding partner CERT drive biogenesis of RNA-containing extracellular vesicles at ER membrane contact sites.Dev Cell2022;57:974-94.e8 PMCID:PMC9075344

[55]

Jeppesen DK,Franklin JL.Extracellular vesicles and nanoparticles: emerging complexities.Trends Cell Biol2023;33:667-81 PMCID:PMC10363204

[56]

Hanahan D.Hallmarks of cancer: the next generation.Cell2011;144:646-74

[57]

Zeineddine FA,Yousef A.Survival improvement for patients with metastatic colorectal cancer over twenty years.NPJ Precis Oncol2023;7:16 PMCID:PMC9925745

[58]

Pretzsch E,Neumann J.Mechanisms of metastasis in colorectal cancer and metastatic organotropism: hematogenous versus peritoneal spread.J Oncol2019;2019:7407190 PMCID:PMC6770301

[59]

Martin TA.The role of tight junctions in cancer metastasis.Semin Cell Dev Biol2014;36:224-31

[60]

Zihni C,Matter K.Tight junctions: from simple barriers to multifunctional molecular gates.Nat Rev Mol Cell Biol2016;17:564-80

[61]

Steeg PS.The blood-tumour barrier in cancer biology and therapy.Nat Rev Clin Oncol2021;18:696-714

[62]

Iwadate Y.Epithelial-mesenchymal transition in glioblastoma progression.Oncol Lett2016;11:1615-20 PMCID:PMC4774466

[63]

Reale A,Spencer A.Extracellular vesicles and their roles in the tumor immune microenvironment.J Clin Med2022;11:6892 PMCID:PMC9737553

[64]

Wortzel I,Kenific CM.Exosome-mediated metastasis: communication from a distance.Dev Cell2019;49:347-60

[65]

Chen G,Zhang W.Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response.Nature2018;560:382-6 PMCID:PMC6095740

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/