Extracellular vesicles in tumor-adipose tissue crosstalk: key drivers and therapeutic targets in cancer cachexia

Cátia C. Ramos , José Pires , Esperanza Gonzalez , Clara Garcia-Vallicrosa , Celso A. Reis , Juan M. Falcon-Perez , Daniela Freitas

Extracellular Vesicles and Circulating Nucleic Acids ›› 2024, Vol. 5 ›› Issue (3) : 371 -96.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2024, Vol. 5 ›› Issue (3) :371 -96. DOI: 10.20517/evcna.2024.36
Review

Extracellular vesicles in tumor-adipose tissue crosstalk: key drivers and therapeutic targets in cancer cachexia

Author information +
History +
PDF

Abstract

Cancer cachexia is a complex metabolic syndrome characterized by unintentional loss of skeletal muscle and body fat. This syndrome is frequently associated with different types of cancer and negatively affects the prognosis and outcome of these patients. It involves a dynamic interplay between tumor cells and adipose tissue, where tumor-derived extracellular vesicles (EVs) play a crucial role in mediating intercellular communication. Tumor cells release EVs containing bioactive molecules such as hormones (adrenomedullin, PTHrP), pro-inflammatory cytokines (IL-6), and miRNAs (miR-1304-3p, miR-204-5p, miR-155, miR-425-3p, miR-146b-5p, miR-92a-3p), which can trigger lipolysis and induce the browning of white adipocytes contributing to a cancer cachexia phenotype. On the other hand, adipocyte-derived EVs can reprogram the metabolism of tumor cells by transporting fatty acids and enzymes involved in fatty acid oxidation, resulting in tumor growth and progression. These vesicles also carry leptin and key miRNAs (miR-155-5p, miR-10a-3p, miR-30a-3p, miR-32a/b, miR-21), thereby supporting tumor cell proliferation, metastasis formation, and therapy resistance. Understanding the intricate network underlying EV-mediated communication between tumor cells and adipocytes can provide critical insights into the mechanisms driving cancer cachexia. This review consolidates current knowledge on the crosstalk between tumor cells and adipose tissue mediated by EVs and offers valuable insights for future research. It also addresses controversial topics in the field and possible therapeutic approaches to manage cancer cachexia and ultimately improve patient outcomes and quality of life.

Keywords

Cancer cachexia / extracellular vesicles / cancer / adipose tissue transdifferentiation / metabolism / exosome

Cite this article

Download citation ▾
Cátia C. Ramos, José Pires, Esperanza Gonzalez, Clara Garcia-Vallicrosa, Celso A. Reis, Juan M. Falcon-Perez, Daniela Freitas. Extracellular vesicles in tumor-adipose tissue crosstalk: key drivers and therapeutic targets in cancer cachexia. Extracellular Vesicles and Circulating Nucleic Acids, 2024, 5(3): 371-96 DOI:10.20517/evcna.2024.36

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Argilés JM,Stemmler B.Cancer cachexia: understanding the molecular basis.Nat Rev Cancer2014;14:754-62

[2]

Tisdale MJ.Cachexia in cancer patients.Nat Rev Cancer2002;2:862-71

[3]

Baracos VE,Korc M,Fearon KCH.Cancer-associated cachexia.Nat Rev Dis Primers2018;4:17105

[4]

Fearon K,Anker SD.Definition and classification of cancer cachexia: an international consensus.Lancet Oncol2011;12:489-95

[5]

Roeland EJ,Baracos VE.Management of cancer cachexia: ASCO guideline.J Clin Oncol2020;38:2438-53

[6]

Neshan M,Han X,Pawlik TM.Molecular mechanisms of cachexia: a review.Cells2024;13:252 PMCID:PMC10854699

[7]

Armstrong VS,Bathe OF.Cancer-associated muscle wasting-candidate mechanisms and molecular pathways.Int J Mol Sci2020;21:9268 PMCID:PMC7729509

[8]

Wang Y.Extracellular vesicles in cancer cachexia: deciphering pathogenic roles and exploring therapeutic horizons.J Transl Med2024;22:506 PMCID:PMC11129506

[9]

Marzan AL.Unravelling the role of cancer cell-derived extracellular vesicles in muscle atrophy, lipolysis, and cancer-associated cachexia.Cells2023;12:2598 PMCID:PMC10670053

[10]

Zhang G,Ding H.Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90.Nat Commun2017;8:589 PMCID:PMC5605540

[11]

Hu W,Zhou Y.Lung cancer-derived extracellular vesicles induced myotube atrophy and adipocyte lipolysis via the extracellular IL-6-mediated STAT3 pathway.Biochim Biophys Acta Mol Cell Biol Lipids2019;1864:1091-102

[12]

Zhang W,Gu X.GDF-15 in tumor-derived exosomes promotes muscle atrophy via Bcl-2/caspase-3 pathway.Cell Death Discov2022;8:162 PMCID:PMC8980041

[13]

Gao X,Lu F.Extracellular vesicles derived from oesophageal cancer containing P4HB promote muscle wasting via regulating PHGDH/Bcl-2/caspase-3 pathway.J Extracell Vesicles2021;10:e12060 PMCID:PMC7944388

[14]

Yang J,Zhang Y.ZIP4 promotes muscle wasting and cachexia in mice with orthotopic pancreatic tumors by stimulating RAB27B-regulated release of extracellular vesicles from cancer cells.Gastroenterology2019;156:722-34.e6 PMCID:PMC6878980

[15]

Qiu L,Wu C,Li Y.Exosomes of oral squamous cell carcinoma cells containing miR-181a-3p induce muscle cell atrophy and apoptosis by transmissible endoplasmic reticulum stress signaling.Biochem Biophys Res Commun2020;533:831-7

[16]

Miao C,Feng L.Cancer-derived exosome miRNAs induce skeletal muscle wasting by Bcl-2-mediated apoptosis in colon cancer cachexia.Mol Ther Nucleic Acids2021;24:923-38 PMCID:PMC8141664

[17]

He WA,Londhe P,Guttridge DC.Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7.Proc Natl Acad Sci U S A2014;111:4525-9 PMCID:PMC3970508

[18]

Wang L,Zheng W.Exosomes derived from pancreatic cancer cells induce insulin resistance in C2C12 myotube cells through the PI3K/Akt/FoxO1 pathway.Sci Rep2017;7:5384 PMCID:PMC5511275

[19]

Kuang JX,Zhang RQ.Carnosol attenuated atrophy of C2C12 myotubes induced by tumour-derived exosomal miR-183-5p through inhibiting Smad3 pathway activation and keeping mitochondrial respiration.Basic Clin Pharmacol Toxicol2022;131:500-13

[20]

Ruan X,Yan W.Cancer-cell-secreted extracellular vesicles target p53 to impair mitochondrial function in muscle.EMBO Rep2023;24:e56464 PMCID:PMC10481655

[21]

Dumas JF.Interaction between adipose tissue and cancer cells: role for cancer progression.Cancer Metastasis Rev2021;40:31-46

[22]

Lengyel E,DiGiovanni J.Cancer as a matter of fat: the crosstalk between adipose tissue and tumors.Trends Cancer2018;4:374-84 PMCID:PMC5932630

[23]

Morigny P,Arner P.Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics.Nat Rev Endocrinol2021;17:276-95

[24]

Beloribi-Djefaflia S,Guillaumond F.Lipid metabolic reprogramming in cancer cells.Oncogenesis2016;5:e189 PMCID:PMC4728678

[25]

Law ML.Cancer cachexia: Pathophysiology and association with cancer-related pain.Front Pain Res2022;3:971295 PMCID:PMC9441771

[26]

Li M,Cai B.Biological role of metabolic reprogramming of cancer cells during epithelial-mesenchymal transition (Review).Oncol Rep2019;41:727-41

[27]

Sun L,Yu S.An epidemiological survey of cachexia in advanced cancer patients and analysis on its diagnostic and treatment status.Nutr Cancer2015;67:1056-62

[28]

Stewart GD,Fearon KC.Cancer cachexia and fatigue.Clin Med2006;6:140-3 PMCID:PMC4953193

[29]

Rogers JB,Minteer JF.Cachexia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.

[30]

Evans WJ,Argilés J.Cachexia: a new definition.Clin Nutr2008;27:793-9

[31]

Chowdhry SM.Cancer cachexia and treatment toxicity.Curr Opin Support Palliat Care2019;13:292-7

[32]

Argilés JM,Toledo M,Serpe R.The cachexia score (CASCO): a new tool for staging cachectic cancer patients.J Cachexia Sarcopenia Muscle2011;2:87-93 PMCID:PMC3117995

[33]

Cao Z,Jose I,Osellame LD.Biomarkers for cancer cachexia: a mini review.Int J Mol Sci2021;22:4501 PMCID:PMC8123431

[34]

Geppert J.Cancer cachexia: biomarkers and the influence of age.Mol Oncol2024;Online ahead of print

[35]

Argilés JM,Guàrdia-Olmos J.Validation of the CAchexia SCOre (CASCO). Staging cancer patients: the use of miniCASCO as a simplified tool.Front Physiol2017;8:92 PMCID:PMC5313479

[36]

Watanabe H.The latest treatments for cancer cachexia: an overview.Anticancer Res2023;43:511-21

[37]

Nishikawa H,Fukunishi S,Nishiguchi S.Cancer cachexia: its mechanism and clinical significance.Int J Mol Sci2021;22:8491 PMCID:PMC8395185

[38]

Setiawan T,Wijaya YT.Cancer cachexia: molecular mechanisms and treatment strategies.J Hematol Oncol2023;16:54 PMCID:PMC10204324

[39]

Ling T,Ding F.Role of growth differentiation factor 15 in cancer cachexia (Review).Oncol Lett2023;26:462 PMCID:PMC10534279

[40]

Siddiqui JA,Khan P.Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia.Cytokine Growth Factor Rev2022;64:71-83 PMCID:PMC8957514

[41]

Mullican SE,Chin CN.GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates.Nat Med2017;23:1150-7

[42]

Emmerson PJ,Du Y.The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL.Nat Med2017;23:1215-9

[43]

Lerner L,Tao N.Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients.J Cachexia Sarcopenia Muscle2015;6:317-24 PMCID:PMC4670740

[44]

Suriben R,Higbee J.Antibody-mediated inhibition of GDF15-GFRAL activity reverses cancer cachexia in mice.Nat Med2020;26:1264-70

[45]

Kim-Muller JY,LaCarubba Paulhus B.GDF15 neutralization restores muscle function and physical performance in a mouse model of cancer cachexia.Cell Rep2023;42:111947

[46]

Hendifar A,Weinberg B.Abstract PR006: initial results of a cohort of advanced pancreatic cancer patients in a phase 1b Study of NGM120, a first-in-class anti-GDNF Family Receptor Alpha Like (GFRAL) antibody.Cancer Res2022;82:PR006

[47]

Crawford J,Collins SM.A phase Ib first-in-patient study assessing the safety, tolerability, pharmacokinetics, and pharmacodynamics of ponsegromab in participants with cancer and cachexia.Clin Cancer Res2024;30:489-97 PMCID:PMC10831332

[48]

Argilés JM,Busquets S.Mediators of cachexia in cancer patients.Nutrition2019;66:11-5

[49]

Patel HJ.TNF-α and cancer cachexia: molecular insights and clinical implications.Life Sci2017;170:56-63

[50]

Bonetto A,Jin X.JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia.Am J Physiol Endocrinol Metab2012;303:E410-21 PMCID:PMC3423125

[51]

Rupert JE,Jengelley DHA.Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia.J Exp Med2021;218:e20190450 PMCID:PMC8185651

[52]

White JP,Gao S,Welle SL.Muscle mTORC1 suppression by IL-6 during cancer cachexia: a role for AMPK.Am J Physiol Endocrinol Metab2013;304:E1042-52 PMCID:PMC3651620

[53]

Wang X,Hu J,Mitch WE.Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling.Endocrinology2006;147:4160-8

[54]

Asp ML,Wendel AA.Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice.Int J Cancer2010;126:756-63

[55]

Argilés JM,Busquets S.Muscle wasting in cancer: the role of mitochondria.Curr Opin Clin Nutr Metab Care2015;18:221-5

[56]

Porporato PE.Understanding cachexia as a cancer metabolism syndrome.Oncogenesis2016;5:e200 PMCID:PMC5154342

[57]

Coelho M,Fernandes R.Biochemistry of adipose tissue: an endocrine organ.Arch Med Sci2013;9:191-200 PMCID:PMC3648822

[58]

Kershaw EE.Adipose tissue as an endocrine organ.J Clin Endocrinol Metab2004;89:2548-56

[59]

Torres N,Tovar AR.Adipose tissue: white adipose tissue structure and function. In: Caballero B, Finglas PM, Toldrá F, editors. Encyclopedia of food and health. Oxford: Academic Press; 2016. pp. 35-42.

[60]

Peurichard D,Lorsignol A.Simple mechanical cues could explain adipose tissue morphology.J Theor Biol2017;429:61-81

[61]

Czerwiec K,Deptuła M.Adipose-derived mesenchymal stromal cells in basic research and clinical applications.Int J Mol Sci2023;24:3888 PMCID:PMC9962639

[62]

Farmer SR.Regulation of PPARgamma activity during adipogenesis.Int J Obes2005;29:S13-6

[63]

Bruderer M,Alini M.Role and regulation of RUNX2 in osteogenesis.Eur Cell Mater2014;28:269-86

[64]

Yi SW,Oh HJ.Gene expression profiling of chondrogenic differentiation by dexamethasone-conjugated polyethyleneimine with SOX trio genes in stem cells.Stem Cell Res Ther2018;9:341 PMCID:PMC6286596

[65]

Wu H,Shen C.Peroxisome proliferator-activated receptor gamma in white and brown adipocyte regulation and differentiation.Physiol Res2020;69:759-73 PMCID:PMC8549902

[66]

Lee JH.Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions.Biochem Biophys Res Commun2006;341:882-8

[67]

Liu N,Zhen Y.Factors influencing myogenic differentiation of adipose-derived stem cells and their application in muscle regeneration.Chin J Plast Reconstr Surg2022;4:126-32

[68]

Daas SI,Nasrallah GK.Adipose tissue dysfunction in cancer cachexia.J Cell Physiol2018;234:13-22

[69]

Trayhurn P.Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ.Proc Nutr Soc2001;60:329-39

[70]

Cohen P.Brown and beige fat: molecular parts of a thermogenic machine.Diabetes2015;64:2346-51 PMCID:PMC4477363

[71]

Virtanen KA,Orava J.Functional brown adipose tissue in healthy adults.N Engl J Med2009;360:1518-25

[72]

Sacks H.Anatomical locations of human brown adipose tissue: functional relevance and implications in obesity and type 2 diabetes.Diabetes2013;62:1783-90 PMCID:PMC3661606

[73]

Harms M.Brown and beige fat: development, function and therapeutic potential.Nat Med2013;19:1252-63

[74]

Agustsson T,Hoffstedt J.Mechanism of increased lipolysis in cancer cachexia.Cancer Res2007;67:5531-7

[75]

Kliewer KL,Tian M,Andridge RR.Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice.Cancer Biol Ther2015;16:886-97 PMCID:PMC4622729

[76]

Petruzzelli M,Schreiber R.A switch from white to brown fat increases energy expenditure in cancer-associated cachexia.Cell Metab2014;20:433-47

[77]

Kir S,Kleiner S.Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia.Nature2014;513:100-4 PMCID:PMC4224962

[78]

Bing C,Becket E.Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice.Br J Cancer2006;95:1028-37 PMCID:PMC2360696

[79]

Batista ML Jr,Peres SB.Heterogeneous time-dependent response of adipose tissue during the development of cancer cachexia.J Endocrinol2012;215:363-73

[80]

Sun X,Wu X,Chen K.Fat wasting is damaging: role of adipose tissue in cancer-associated cachexia.Front Cell Dev Biol2020;8:33 PMCID:PMC7028686

[81]

Bezaire V,Ribet C.Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes.J Biol Chem2009;284:18282-91 PMCID:PMC2709346

[82]

Schweiger M,Haemmerle G.Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism.J Biol Chem2006;281:40236-41

[83]

Nieman KM,Van Houten B.Adipose tissue and adipocytes support tumorigenesis and metastasis.Biochim Biophys Acta2013;1831:1533-41 PMCID:PMC3742583

[84]

Koundouros N.Reprogramming of fatty acid metabolism in cancer.Br J Cancer2020;122:4-22 PMCID:PMC6964678

[85]

Wang YY,Milhas D.Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells.JCI Insight2017;2:e87489 PMCID:PMC5313068

[86]

Nomura DK,Chang JW.Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer.Chem Biol2011;18:846-56 PMCID:PMC3149849

[87]

Nomura DK,Niessen S,Ng SW.Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis.Cell2010;140:49-61 PMCID:PMC2885975

[88]

Yin H,Mo L.Adipose triglyceride lipase promotes the proliferation of colorectal cancer cells via enhancing the lipolytic pathway.J Cell Mol Med2021;25:3963-75 PMCID:PMC8051714

[89]

Kir S.Cachexia & brown fat: a burning issue in cancer.Trends Cancer2016;2:461-3 PMCID:PMC5407404

[90]

Seale P,Yang W.Transcriptional control of brown fat determination by PRDM16.Cell Metab2007;6:38-54 PMCID:PMC2564846

[91]

Rosen ED,Wang X.C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway.Genes Dev2002;16:22-6 PMCID:PMC155311

[92]

Rim JS.Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene.J Biol Chem2002;277:34589-600

[93]

Shen SH,Raffaele M.Adipocyte-specific expression of PGC1α promotes adipocyte browning and alleviates obesity-induced metabolic dysfunction in an HO-1-dependent fashion.Antioxidants2022;11:1147 PMCID:PMC9220759

[94]

Pettersson-Klein AT,Ferreira DMS.Small molecule PGC-1α1 protein stabilizers induce adipocyte Ucp1 expression and uncoupled mitochondrial respiration.Mol Metab2018;9:28-42 PMCID:PMC5870114

[95]

Elattar S,Satyanarayana A.The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting.FASEB J2018;32:4727-43 PMCID:PMC6266632

[96]

Hale LP,Sanchez LM,Madden JF.Zinc alpha-2-glycoprotein is expressed by malignant prostatic epithelium and may serve as a potential serum marker for prostate cancer.Clin Cancer Res2001;7:846-53

[97]

Díez-Itza I,Allende MT,Ruibal A.Zn-alpha 2-glycoprotein levels in breast cancer cytosols and correlation with clinical, histological and biochemical parameters.Eur J Cancer1993;29A:1256-60

[98]

Mracek T,Gao D.Enhanced ZAG production by subcutaneous adipose tissue is linked to weight loss in gastrointestinal cancer patients.Br J Cancer2011;104:441-7 PMCID:PMC3049573

[99]

Bing C,Beckett EE.Expression of uncoupling proteins-1, -2 and -3 mRNA is induced by an adenocarcinoma-derived lipid-mobilizing factor.Br J Cancer2002;86:612-8 PMCID:PMC2375279

[100]

Matthys P,Proost P.Severe cachexia in mice inoculated with interferon-gamma-producing tumor cells.Int J Cancer1991;49:77-82

[101]

Mantovani G,Mura L.Serum levels of leptin and proinflammatory cytokines in patients with advanced-stage cancer at different sites.J Mol Med2000;78:554-61

[102]

Han J,Shen L.Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning.Lipids Health Dis2018;17:14 PMCID:PMC5771021

[103]

Molfino A,Imbimbo G.Evaluation of browning markers in subcutaneous adipose tissue of newly diagnosed gastrointestinal cancer patients with and without cachexia.Cancers2022;14:1948 PMCID:PMC9025935

[104]

Becker A,Weiss JM,Peinado H.Extracellular vesicles in cancer: cell-to-cell mediators of metastasis.Cancer Cell2016;30:836-48 PMCID:PMC5157696

[105]

Pitzer CR,Alway SE.The contribution of tumor derived exosomes to cancer cachexia.Cells2023;12:292 PMCID:PMC9856599

[106]

Hu Y,Chen Y.Cancer-cell-secreted miR-204-5p induces leptin signalling pathway in white adipose tissue to promote cancer-associated cachexia.Nat Commun2023;14:5179 PMCID:PMC10449837

[107]

Di W,Zhu B,Tang Q.Colorectal cancer prompted adipose tissue browning and cancer cachexia through transferring exosomal miR-146b-5p.J Cell Physiol2021;236:5399-410

[108]

Hu W,Ru Z.Extracellular vesicles-released parathyroid hormone-related protein from Lewis lung carcinoma induces lipolysis and adipose tissue browning in cancer cachexia.Cell Death Dis2021;12:134 PMCID:PMC7843996

[109]

Xiong H,Luo Q,Xu N.Exosomal EIF5A derived from Lewis lung carcinoma induced adipocyte wasting in cancer cachexia.Cell Signal2023;112:110901

[110]

Liu Y,Deng T.Exosomal miR-155 from gastric cancer induces cancer-associated cachexia by suppressing adipogenesis and promoting brown adipose differentiation via C/EPBβ.Cancer Biol Med2022;19:1301-14 PMCID:PMC9500219

[111]

Bouche C.Fueling the tumor microenvironment with cancer-associated adipocytes.Cancer Res2023;83:1170-2

[112]

Lazar I,Carrié L.Adipocyte extracellular vesicles decrease p16INK4A in melanoma: an additional link between obesity and cancer.J Invest Dermatol2022;142:2488-98.e8

[113]

Liu S,Pelissier Vatter FA.Breast adipose tissue-derived extracellular vesicles from obese women alter tumor cell metabolism.EMBO Rep2023;24:e57339

[114]

La Camera G,Malivindi R.Adipocyte-derived extracellular vesicles promote breast cancer cell malignancy through HIF-1α activity.Cancer Lett2021;521:155-68

[115]

Zhang Q,Zhang H.Adipocyte-derived exosomal MTTP suppresses ferroptosis and promotes chemoresistance in colorectal cancer.Adv Sci2022;9:e2203357 PMCID:PMC9534973

[116]

Clement E,Attané C.Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells.EMBO J2020;39:e102525 PMCID:PMC6996584

[117]

Lazar I,Dauvillier S.Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer.Cancer Res2016;76:4051-7

[118]

Liu Y,Ou S,Chen L.Adipose-derived exosomes deliver miR-23a/b to regulate tumor growth in hepatocellular cancer by targeting the VHL/HIF axis.J Physiol Biochem2019;75:391-401

[119]

Au Yeung CL,Tsuruga T.Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1.Nat Commun2016;7:11150 PMCID:PMC4820618

[120]

Fontana F,Carollo E.Adipocyte-derived extracellular vesicles promote prostate cancer cell aggressiveness by enabling multiple phenotypic and metabolic changes.Cells2022;11:2388 PMCID:PMC9368412

[121]

Yáñez-Mó M,Andreu Z.Biological properties of extracellular vesicles and their physiological functions.J Extracell Vesicles2015;4:27066 PMCID:PMC4433489

[122]

Martins ÁM,Freitas D.Glycosylation of cancer extracellular vesicles: capture strategies, functional roles and potential clinical applications.Cells2021;10:109 PMCID:PMC7827205

[123]

Rackles E,Falcon-Perez JM.Extracellular vesicles as source for the identification of minimally invasive molecular signatures in glioblastoma.Semin Cancer Biol2022;87:148-59

[124]

Welsh JA, Goberdhan DCI, O’Driscoll L, et al; MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches.J Extracell Vesicles2024;13:e12404 PMCID:PMC10850029

[125]

van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles.Nat Rev Mol Cell Biol2018;19:213-28

[126]

Bebelman MP,Pegtel DM.Biogenesis and function of extracellular vesicles in cancer.Pharmacol Ther2018;188:1-11

[127]

Zhang H,Kim HS.Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation.Nat Cell Biol2018;20:332-43 PMCID:PMC5931706

[128]

Kusuma GD,Tan JL,Frith JE.To protect and to preserve: novel preservation strategies for extracellular vesicles.Front Pharmacol2018;9:1199 PMCID:PMC6215815

[129]

Kalra H,Mathivanan S.Focus on extracellular vesicles: introducing the next small big thing.Int J Mol Sci2016;17:170 PMCID:PMC4783904

[130]

Doyle LM.Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis.Cells2019;8:727 PMCID:PMC6678302

[131]

Argilés JM,Toledo M.The role of cytokines in cancer cachexia.Curr Opin Support Palliat Care2009;3:263-8

[132]

Argilés JM,López-Soriano FJ.The pivotal role of cytokines in muscle wasting during cancer.Int J Biochem Cell Biol2005;37:2036-46

[133]

Zhao D,Sharma S.Exosomal miR-1304-3p promotes breast cancer progression in African Americans by activating cancer-associated adipocytes.Nat Commun2022;13:7734 PMCID:PMC9751138

[134]

Sun S,Yao F.Breast cancer cell-derived exosome-delivered microRNA-155 targets UBQLN1 in adipocytes and facilitates cancer cachexia-related fat loss.Hum Mol Genet2023;32:2219-28 PMCID:PMC10281747

[135]

Sun Z,Feng Y.Exosomal linc-ROR mediates crosstalk between cancer cells and adipocytes to promote tumor growth in pancreatic cancer.Mol Ther Nucleic Acids2021;26:253-68 PMCID:PMC8413664

[136]

Sagar G,Javeed N.Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue.Gut2016;65:1165-74 PMCID:PMC5323066

[137]

Wang S,Xiao X.Pancreatic cancer cell exosomes induce lipidomics changes in adipocytes.Adipocyte2022;11:346-55 PMCID:PMC9235897

[138]

Sun D,Shen L,Han J.miR-410-3P inhibits adipocyte differentiation by targeting IRS-1 in cancer-associated cachexia patients.Lipids Health Dis2021;20:115 PMCID:PMC8465700

[139]

Liu A,Zhuang S,Zhang H.Cancer cell-derived exosomal miR-425-3p induces white adipocyte atrophy.Adipocyte2022;11:487-500 PMCID:PMC9367658

[140]

Hu W,Xiao W.Adipose tissue browning in cancer-associated cachexia can be attenuated by inhibition of exosome generation.Biochem Biophys Res Commun2018;506:122-9

[141]

Xiong H,Xie K,Xu N.Exosomal IL-8 derived from Lung Cancer and Colon Cancer cells induced adipocyte atrophy via NF-κB signaling pathway.Lipids Health Dis2022;21:147 PMCID:PMC9798689

[142]

Wan Z,Gao X.Chronic myeloid leukemia-derived exosomes attenuate adipogenesis of adipose derived mesenchymal stem cells via transporting miR-92a-3p.J Cell Physiol2019;234:21274-83

[143]

Wang S,Xu M,Zhao RC.Reduced adipogenesis after lung tumor exosomes priming in human mesenchymal stem cells via TGFβ signaling pathway.Mol Cell Biochem2017;435:59-66

[144]

Abd Elmageed ZY,Thomas R.Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes.Stem Cells2014;32:983-97 PMCID:PMC4184251

[145]

Ba L,Li X.Gastric cancer cell-derived exosomes can regulate the biological functions of mesenchymal stem cells by inducing the expression of circular RNA circ_0004303.Stem Cells Dev2021;30:830-42

[146]

Liu Z,Gao S.Ameliorating cancer cachexia by inhibiting cancer cell release of Hsp70 and Hsp90 with omeprazole.J Cachexia Sarcopenia Muscle2022;13:636-47 PMCID:PMC8818607

[147]

Fan M,Zhang W.Atractylenolide I ameliorates cancer cachexia through inhibiting biogenesis of IL-6 and tumour-derived extracellular vesicles.J Cachexia Sarcopenia Muscle2022;13:2724-39 PMCID:PMC9745491

[148]

Wang S,Li X.Exosomes released by hepatocarcinoma cells endow adipocytes with tumor-promoting properties.J Hematol Oncol2018;11:82 PMCID:PMC6001126

[149]

Song YH,Choi SJ.Breast cancer-derived extracellular vesicles stimulate myofibroblast differentiation and pro-angiogenic behavior of adipose stem cells.Matrix Biol2017;60-1:190-205 PMCID:PMC5438891

[150]

Cho JA,Lim EH.Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells.Int J Oncol2012;40:130-8

[151]

Cho JA,Lim EH.Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts.Gynecol Oncol2011;123:379-86

[152]

Li G,Du S.Tumour-derived exosomal piR-25783 promotes omental metastasis of ovarian carcinoma by inducing the fibroblast to myofibroblast transition.Oncogene2023;42:421-33

[153]

Casadei L,Braggio DA.MDM2 derived from dedifferentiated liposarcoma extracellular vesicles induces MMP2 production from preadipocytes.Cancer Res2019;79:4911-22 PMCID:PMC6774856

[154]

Jafari N,Meshulam T.Adipocyte-derived exosomes may promote breast cancer progression in type 2 diabetes.Sci Signal2021;14:eabj2807 PMCID:PMC8765301

[155]

Lin R,Zhao RC.Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model.Mol Cell Biochem2013;383:13-20

[156]

Ramos-Andrade I,Brandão-Costa RM.Obese adipose tissue extracellular vesicles raise breast cancer cell malignancy.Endocr Relat Cancer2020;27:571-82

[157]

Wang S,Xu M.Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of Hippo signaling pathway.Stem Cell Res Ther2019;10:117 PMCID:PMC6458638

[158]

Yin H,Shan Y.HIF-1α downregulation of miR-433-3p in adipocyte-derived exosomes contributes to NPC progression via targeting SCD1.Cancer Sci2021;112:1457-70 PMCID:PMC8019221

[159]

Wang J,Guo J,Yu L.Adipocyte-derived exosomes promote lung cancer metastasis by increasing MMP9 activity via transferring MMP3 to lung cancer cells.Oncotarget2017;8:81880-91 PMCID:PMC5669856

[160]

Koeck ES,Sevilla S.Adipocyte exosomes induce transforming growth factor beta pathway dysregulation in hepatocytes: a novel paradigm for obesity-related liver disease.J Surg Res2014;192:268-75

[161]

Qu Q,Cui Y,Wang Y.Exosomes from human omental adipose-derived mesenchymal stem cells secreted into ascites promote peritoneal metastasis of epithelial ovarian cancer.Cells2022;11:3392 PMCID:PMC9655202

[162]

Xue C,Li X.Mesenchymal stem cells derived from adipose accelerate the progression of colon cancer by inducing a MT-CAFs phenotype via TRPC3/NF-KB axis.Stem Cell Res Ther2022;13:335 PMCID:PMC9308187

[163]

Mathiesen A,Huyck R,Dobrian A.Adipose tissue-derived extracellular vesicles contribute to phenotypic plasticity of prostate cancer cells.Int J Mol Sci2023;24:1229 PMCID:PMC9864182

[164]

Wang Z,Bach DH.Induction of m6A methylation in adipocyte exosomal LncRNAs mediates myeloma drug resistance.J Exp Clin Cancer Res2022;41:4 PMCID:PMC8722039

[165]

Cai Z,Xing C.Cancer-associated adipocytes exhibit distinct phenotypes and facilitate tumor progression in pancreatic cancer.Oncol Rep2019;42:2537-49 PMCID:PMC6826327

[166]

Wang Y,Li K.Exosomes secreted by adipose-derived mesenchymal stem cells foster metastasis and osteosarcoma proliferation by increasing COLGALT2 expression.Front Cell Dev Biol2020;8:353 PMCID:PMC7262406

[167]

Dirat B,Dabek M.Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion.Cancer Res2011;71:2455-65

[168]

Nieman KM,Penicka CV.Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth.Nat Med2011;17:1498-503 PMCID:PMC4157349

[169]

Ye H,Khan N.Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche.Cell Stem Cell2016;19:23-37 PMCID:PMC4938766

[170]

Pati S,Jameel A,Shahid RK.Obesity and cancer: a current overview of epidemiology, pathogenesis, outcomes, and management.Cancers2023;15:485 PMCID:PMC9857053

[171]

Kwan HY,Xu K.The impact of obesity on adipocyte-derived extracellular vesicles.Cell Mol Life Sci2021;78:7275-88 PMCID:PMC8531905

[172]

Annett S,Robson T.Obesity and cancer metastasis: molecular and translational perspectives.Cancers2020;12:3798 PMCID:PMC7766668

[173]

Jiralerspong S.Obesity and breast cancer prognosis: evidence, challenges, and opportunities.J Clin Oncol2016;34:4203-16

[174]

Sohn W,Lee S.Obesity and the risk of primary liver cancer: a systematic review and meta-analysis.Clin Mol Hepatol2021;27:157-74 PMCID:PMC7820201

[175]

Parkin E,Sherlock DJ,Renehan AG.Excess adiposity and survival in patients with colorectal cancer: a systematic review.Obes Rev2014;15:434-51

[176]

Doleman B,Lim S,Gagliardi G.Body mass index and colorectal cancer prognosis: a systematic review and meta-analysis.Tech Coloproctol2016;20:517-35

[177]

Rivera-Izquierdo M,Martínez-Ruiz V.Obesity as a risk factor for prostate cancer mortality: a systematic review and dose-response meta-analysis of 280,199 patients.Cancers2021;13:4169 PMCID:PMC8392042

[178]

Majumder K,Arora N,Singh S.Premorbid obesity and mortality in patients with pancreatic cancer: a systematic review and meta-analysis.Clin Gastroenterol Hepatol2016;14:355-68.e2 PMCID:PMC4919073

[179]

Dev R,Dalal S.Insulin resistance and body composition in cancer patients.Ann Oncol2018;29:ii18-26

[180]

Arner P.Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance.Trends Endocrinol Metab2014;25:255-62

[181]

Martin L,Macdonald N.Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index.J Clin Oncol2013;31:1539-47

[182]

Divella R,Mazzocca A.Chronic inflammation in obesity and cancer cachexia.J Clin Med2022;11:2191 PMCID:PMC9027625

[183]

Cardaci TD,Bullard BM.Obesity worsens mitochondrial quality control and does not protect against skeletal muscle wasting in murine cancer cachexia.J Cachexia Sarcopenia Muscle2024;15:124-37 PMCID:PMC10834333

[184]

Chandrasekaran P.The role of obesity in type 2 diabetes mellitus-an overview.Int J Mol Sci2024;25:1882 PMCID:PMC10855901

[185]

Shahid RK,Le D.Diabetes and cancer: risk, challenges, management and outcomes.Cancers2021;13:5735 PMCID:PMC8616213

[186]

Ling S,Miksza JK.Association of type 2 diabetes with cancer: a meta-analysis with bias analysis for unmeasured confounding in 151 cohorts comprising 32 million people.Diabetes Care2020;43:2313-22

[187]

Bjornsdottir HH,Rawshani A.A national observation study of cancer incidence and mortality risks in type 2 diabetes compared to the background population over time.Sci Rep2020;10:17376 PMCID:PMC7566479

[188]

Bergen ES,Le Malicot K.391MO Impact of diabetes and metformin use on recurrence and outcome in early colon cancer (CC) patients: a pooled analysis of 3 adjuvant trials.Ann Oncol2021;32:S534

[189]

Boyle P,Koechlin A.Diabetes and breast cancer risk: a meta-analysis.Br J Cancer2012;107:1608-17 PMCID:PMC3493760

[190]

Chovsepian A,Petrova G.Diabetes increases mortality in patients with pancreatic and colorectal cancer by promoting cachexia and its associated inflammatory status.Mol Metab2023;73:101729 PMCID:PMC10192649

[191]

Dang SY,Wang ZX.Exosomal transfer of obesity adipose tissue for decreased miR-141-3p mediate insulin resistance of hepatocytes.Int J Biol Sci2019;15:351-68 PMCID:PMC6367552

[192]

Kranendonk MEG,van Herwaarden JA.Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells.Obesity2014;22:2216-23

[193]

Jee SH,Lee J.Obesity, insulin resistance and cancer risk.Yonsei Med J2005;46:449-55 PMCID:PMC2815827

[194]

Biswas AK.Understanding cachexia in the context of metastatic progression.Nat Rev Cancer2020;20:274-84

[195]

Takahara K,Inamoto T.microRNA-145 mediates the inhibitory effect of adipose tissue-derived stromal cells on prostate cancer.Stem Cells Dev2016;25:1290-8

[196]

Reza AMMT,Yasuda H.Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells.Sci Rep2016;6:38498 PMCID:PMC5143979

[197]

Zhai S,Lin T.Obese mouse fat cell-derived extracellular vesicles transport miR-99a-5p to mitigate the proliferation and migration of non-small cell lung cancer cells.Comb Chem High Throughput Screen2024;27:214-26

[198]

Guo M,Feng Y,Yang B.Adipose-derived stem cell-derived extracellular vesicles inhibit neuroblastoma growth by regulating GABBR1 activity through LINC00622-mediated transcription factor AR.J Leukoc Biol2022;111:19-32

[199]

Gečys D,Gečytė E,Balnytė I.Adipose tissue-derived stem cell extracellular vesicles suppress glioblastoma proliferation, invasiveness and angiogenesis.Cells2023;12:1247 PMCID:PMC10177295

[200]

Mansourabadi AH,Faraji F.Mesenchymal stem cells- derived exosomes inhibit the expression of Aquaporin-5 and EGFR in HCT-116 human colorectal carcinoma cell line.BMC Mol Cell Biol2022;23:40 PMCID:PMC9479423

[201]

Sheykhhasan M,Sheikholeslami A,Amini E.Exosomes of mesenchymal stem cells as a proper vehicle for transfecting mir-145 into the breast cancer cell line and its effect on metastasis.Biomed Res Int2021;2021:5516078 PMCID:PMC8263260

[202]

Li T,Wang J.Adipose-derived mesenchymal stem cells and extracellular vesicles confer antitumor activity in preclinical treatment of breast cancer.Pharmacol Res2020;157:104843

[203]

Zhou Y,Takeshita F,Xiao Z.Delivery of miR-424-5p via extracellular vesicles promotes the apoptosis of MDA-MB-231 TNBC cells in the tumor microenvironment.Int J Mol Sci2021;22:844 PMCID:PMC7831022

[204]

Shojaei S,Ghanbarian H,Salehi M.Delivery of miR-381-3p mimic by mesenchymal stem cell-derived exosomes inhibits triple negative breast cancer aggressiveness; an in vitro study.Stem Cell Rev Rep2021;17:1027-38

[205]

Gernapudi R,Zhang Y.Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer.Breast Cancer Res Treat2015;150:685-95 PMCID:PMC4385483

[206]

Jia Z,Sun H.Adipose mesenchymal stem cell-derived exosomal microRNA-1236 reduces resistance of breast cancer cells to cisplatin by suppressing SLC9A1 and the Wnt/β-catenin signaling.Cancer Manag Res2020;12:8733-44 PMCID:PMC7519869

[207]

Lou G,Xia C.MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway.J Exp Clin Cancer Res2020;39:4 PMCID:PMC6941283

[208]

Lou G,Yang F.Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma.J Hematol Oncol2015;8:122 PMCID:PMC4627430

[209]

Liu T,Zheng Y.Evaluating adipose-derived stem cell exosomes as miRNA drug delivery systems for the treatment of bladder cancer.Cancer Med2022;11:3687-99 PMCID:PMC9554444

[210]

Liu M,Liu Z,Wang W.Exosomes from adipose-derived stem cells inhibits skin cancer progression via miR-199a-5p/SOX4.Biotechnol Genet Eng Rev2023;1-13

[211]

Wang Y.Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9.Cell Metab2009;9:287-302 PMCID:PMC2673480

[212]

Phase I study of mesenchymal stromal cells-derived exosomes with KrasG12D siRNA for metastatic pancreas cancer patients harboring KrasG12D mutation. Available from: https://www.mdanderson.org/patients-family/diagnosis-treatment/clinical-trials/clinical-trials-index/clinical-trials-detail.ID2018-0126.html. [Last accessed on 22 Jul 2024]

[213]

Smaglo BG,Lee JJ.Abstract C084: iExplore: a phase I study of mesenchymal stem cell derived exosomes with KrasG12D siRNA for metastatic pancreas cancer patients harboring the KrasG12D mutation.Cancer Res2024;84:C084

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/