Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection
Marialaura Fanelli , Vita Petrone , Rossella Chirico , Claudia Maria Radu , Antonella Minutolo , Claudia Matteucci
Extracellular Vesicles and Circulating Nucleic Acids ›› 2024, Vol. 5 ›› Issue (3) : 417 -37.
Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection
Infection with SARS-CoV-2, the virus responsible for COVID-19 diseases, can impact different tissues and induce significant cellular alterations. The production of extracellular vesicles (EVs), which are physiologically involved in cell communication, is also altered during COVID-19, along with the dysfunction of cytoplasmic organelles. Since circulating EVs reflect the state of their cells of origin, they represent valuable tools for monitoring pathological conditions. Despite challenges in detecting EVs due to their size and specific cellular compartment origin using different methodologies, flow cytometry has proven to be an effective method for assessing the role of EVs in COVID-19. This review summarizes the involvement of plasmatic EVs in COVID-19 patients and individuals with Long COVID (LC) affected by post-acute sequelae of SARS-CoV-2 infection (PASC), highlighting their dual role in exerting both pro- and antiviral effects. We also emphasize how flow cytometry, with its multiparametric approach, can be employed to characterize circulating EVs, particularly in infectious diseases such as COVID-19, and suggest their potential role in chronic impairments during post-infection.
Multidistrict infection / multiparametric analysis / biomarkers / flow cytometry / COVID-19 / SARS-CoV-2 / PASC / Long COVID
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
Welsh JA, Goberdhan DCI, O’Driscoll L, et al; MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles 2024;13:e12404. PMCID:PMC10850029 |
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and directions in studying cell-cell communication by extracellular vesicles.Nat Rev Mol Cell Biol2022;23:369-82 |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
Centers for Disease Control and Prevention (CDC). Long COVID basics. Available from: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/. [Last accessed on 8 Aug 2024] |
| [49] |
|
| [50] |
O’Laughlin KN, Thompson M, Hota B, et al; INSPIRE Investigators. Study protocol for the Innovative Support for Patients with SARS-COV-2 Infections Registry (INSPIRE): a longitudinal study of the medium and long-term sequelae of SARS-CoV-2 infection. PLoS One 2022;17:e0264260. PMCID:PMC8893622 |
| [51] |
Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis 2022;22:e102-7. PMCID:PMC8691845 |
| [52] |
Carfì A, Bernabei R, Landi F; Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 2020;324:603-5. PMCID:PMC7349096 |
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
Di Bella MA. Overview and update on extracellular vesicles: considerations on exosomes and their application in modern medicine.Biology2022;11:804 PMCID:PMC9220244 |
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy.Wiley Interdiscip Rev Nanomed Nanobiotechnol2023;15:e1835 PMCID:PMC10078256 |
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
Del Molino Del Barrio I, Hayday TS, Laing AG, Hayday AC, Di Rosa F. COVID-19: using high-throughput flow cytometry to dissect clinical heterogeneity.Cytometry A2023;103:117-26 PMCID:PMC9011838 |
| [137] |
|
| [138] |
|
/
| 〈 |
|
〉 |