Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection

Marialaura Fanelli , Vita Petrone , Rossella Chirico , Claudia Maria Radu , Antonella Minutolo , Claudia Matteucci

Extracellular Vesicles and Circulating Nucleic Acids ›› 2024, Vol. 5 ›› Issue (3) : 417 -37.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2024, Vol. 5 ›› Issue (3) :417 -37. DOI: 10.20517/evcna.2024.20
Review

Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection

Author information +
History +
PDF

Abstract

Infection with SARS-CoV-2, the virus responsible for COVID-19 diseases, can impact different tissues and induce significant cellular alterations. The production of extracellular vesicles (EVs), which are physiologically involved in cell communication, is also altered during COVID-19, along with the dysfunction of cytoplasmic organelles. Since circulating EVs reflect the state of their cells of origin, they represent valuable tools for monitoring pathological conditions. Despite challenges in detecting EVs due to their size and specific cellular compartment origin using different methodologies, flow cytometry has proven to be an effective method for assessing the role of EVs in COVID-19. This review summarizes the involvement of plasmatic EVs in COVID-19 patients and individuals with Long COVID (LC) affected by post-acute sequelae of SARS-CoV-2 infection (PASC), highlighting their dual role in exerting both pro- and antiviral effects. We also emphasize how flow cytometry, with its multiparametric approach, can be employed to characterize circulating EVs, particularly in infectious diseases such as COVID-19, and suggest their potential role in chronic impairments during post-infection.

Keywords

Multidistrict infection / multiparametric analysis / biomarkers / flow cytometry / COVID-19 / SARS-CoV-2 / PASC / Long COVID

Cite this article

Download citation ▾
Marialaura Fanelli, Vita Petrone, Rossella Chirico, Claudia Maria Radu, Antonella Minutolo, Claudia Matteucci. Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection. Extracellular Vesicles and Circulating Nucleic Acids, 2024, 5(3): 417-37 DOI:10.20517/evcna.2024.20

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alberts B,Lewis J,Roberts K. General principles of cell communication. In: Molecular Biology of the Cell. New York: Garland Science; 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26813/. [Last accessed on 8 Aug 2024]

[2]

Pitt JM,Zitvogel L.Extracellular vesicles: masters of intercellular communication and potential clinical interventions.J Clin Invest2016;126:1139-43 PMCID:PMC4811136

[3]

Ståhl AL,Mossberg M,Karpman D.Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases.Pediatr Nephrol2019;34:11-30 PMCID:PMC6244861

[4]

György B,Pásztói M.Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles.Cell Mol Life Sci2011;68:2667-88 PMCID:PMC3142546

[5]

Welsh JA, Goberdhan DCI, O’Driscoll L, et al; MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles 2024;13:e12404. PMCID:PMC10850029

[6]

Tkach M,Théry C.Why the need and how to approach the functional diversity of extracellular vesicles.Philos Trans R Soc Lond B Biol Sci2018;373:20160479 PMCID:PMC5717434

[7]

Maisano D,Russo R.Uncovering the exosomes diversity: a window of opportunity for tumor progression monitoring.Pharmaceuticals2020;13:180 PMCID:PMC7464894

[8]

Yáñez-Mó M,Andreu Z.Biological properties of extracellular vesicles and their physiological functions.J Extracell Vesicles2015;4:27066 PMCID:PMC4433489

[9]

Kowal J,Théry C.Biogenesis and secretion of exosomes.Curr Opin Cell Biol2014;29:116-25

[10]

Yokoi A.Exosomes and extracellular vesicles: rethinking the essential values in cancer biology.Semin Cancer Biol2021;74:79-91

[11]

Doyle LM.Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis.Cells2019;8:727 PMCID:PMC6678302

[12]

Skotland T,Sandvig K.Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology.J Lipid Res2019;60:9-18 PMCID:PMC6314266

[13]

van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and directions in studying cell-cell communication by extracellular vesicles.Nat Rev Mol Cell Biol2022;23:369-82

[14]

Negahdaripour M,Nezafat N.Exosome-based vaccines and their position in next generation vaccines.Int Immunopharmacol2022;113:109265

[15]

Murillo OD,Rozowsky J.exRNA Atlas analysis reveals distinct extracellular RNA cargo types and their carriers present across human biofluids.Cell2019;177:463-77.e15 PMCID:PMC6616370

[16]

Adams K,Johnson SM.Exposome and immunity training: how pathogen exposure order influences innate immune cell lineage commitment and function.Int J Mol Sci2020;21:8462 PMCID:PMC7697998

[17]

Bril M,Kurniawan NA.Stimuli-responsive materials: a smart way to study dynamic cell responses.Smart Mater Med2022;3:257-73

[18]

Fleenor CJ,Weil MM.Evolved cellular mechanisms to respond to genotoxic insults: implications for radiation-induced hematologic malignancies.Radiat Res2015;184:341-51 PMCID:PMC4617554

[19]

Nagpal S.Environmental insults and compensative responses: when microbiome meets cancer.Discov Oncol2023;14:130 PMCID:PMC10349797

[20]

Leroy H,Woottum M.Virus-mediated cell-cell fusion.Int J Mol Sci2020;21:9644 PMCID:PMC7767094

[21]

Thaker SK,Christofk HR.Viral hijacking of cellular metabolism.BMC Biol2019;17:59 PMCID:PMC6637495

[22]

Albrecht T,Boldogh I.Effects on cells. In: Baron S, editor. Medical microbiology. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 44.

[23]

Fanelli M,Buonifacio M.Multidistrict host-pathogen interaction during COVID-19 and the development post-infection chronic inflammation.Pathogens2022;11:1198 PMCID:PMC9607297

[24]

Delorey TM,Heimberg G.COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets.Nature2021;595:107-13 PMCID:PMC8919505

[25]

Ashraf UM,Edwards JM.SARS-CoV-2, ACE2 expression, and systemic organ invasion.Physiol Genomics2021;53:51-60 PMCID:PMC7900915

[26]

Mollica V,Massari F.The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer.Future Oncol2020;16:2029-33 PMCID:PMC7359420

[27]

Shapira T,Dion SP.A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic.Nature2022;605:340-8 PMCID:PMC9095466

[28]

Akiyama H,Gudheti MV.CD169-mediated trafficking of HIV to plasma membrane invaginations in dendritic cells attenuates efficacy of anti-gp120 broadly neutralizing antibodies.PLoS Pathog2015;11:e1004751 PMCID:PMC4356592

[29]

Gutiérrez-Martínez E,Mateos N.Actin-regulated Siglec-1 nanoclustering influences HIV-1 capture and virus-containing compartment formation in dendritic cells.Elife2023;12:e78836 PMCID:PMC10065798

[30]

Perez-Zsolt D,Rodon J.SARS-CoV-2 interaction with Siglec-1 mediates trans-infection by dendritic cells.Cell Mol Immunol2021;18:2676-8 PMCID:PMC8591443

[31]

Pizzato M,Boscato Sopetto G.SARS-CoV-2 and the host cell: a tale of interactions.Front Virol2022;1:815388

[32]

Pellet-Many C,Jia H.Neuropilins: structure, function and role in disease.Biochem J2008;411:211-26

[33]

Cantuti-Castelvetri L,Pedro LD.Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity.Science2020;370:856-60 PMCID:PMC7857391

[34]

Li ZL.Neuropilin-1 assists SARS-CoV-2 infection by stimulating the separation of spike protein S1 and S2.Biophys J2021;120:2828-37 PMCID:PMC8169233

[35]

Wayhelova M,Broz P.A unique case of Bloom syndrome with a combination of genetic hits: a lesson from trio‑based exome sequencing: a case report.Mol Med Rep2023;27:110 PMCID:PMC10119849

[36]

Gonzalez-Garcia P,Zarate Peñata E.From cell to symptoms: the role of SARS-CoV-2 cytopathic effects in the pathogenesis of COVID-19 and Long COVID.Int J Mol Sci2023;24:8290 PMCID:PMC10179575

[37]

Shang C,Zhu Y.SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment.Front Microbiol2021;12:780768 PMCID:PMC8770829

[38]

Upadhyay M.Endoplasmic reticulum secretory pathway: potential target against SARS-CoV-2.Virus Res2022;320:198897 PMCID:PMC9387115

[39]

Sicari D,Koutsandreas T,Chevet E.Role of the early secretory pathway in SARS-CoV-2 infection.J Cell Biol2020;219:e202006005 PMCID:PMC7480111

[40]

Kloc M,Wosik J,Ghobrial RM.Virus interactions with the actin cytoskeleton - what we know and do not know about SARS-CoV-2.Arch Virol2022;167:737-49 PMCID:PMC8803281

[41]

Cooper GM. The mechanism of vesicular transport. In: The cell: a molecular approach. Sunderland (MA): Sinauer Associates; 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9886//. [Last accessed on 8 Aug 2024]

[42]

Bonifacino JS.The mechanisms of vesicle budding and fusion.Cell2004;116:153-66

[43]

Sbarigia C,Buccini L,Dini L.SARS-CoV-2 and extracellular vesicles: an intricate interplay in pathogenesis, diagnosis and treatment.Front Nanotechnol2022;4:987034

[44]

Kumar A,Tadrous E.Extracellular vesicles in viral replication and pathogenesis and their potential role in therapeutic intervention.Viruses2020;12:887 PMCID:PMC7472073

[45]

Fujita M,Sugihara A,Kimura S.Immune thrombocytopenia exacerbation after COVID-19 vaccination in a young woman.Cureus2021;13:e17942 PMCID:PMC8513936

[46]

van Eijk LE,Bourgonje AR.COVID-19: immunopathology, pathophysiological mechanisms, and treatment options.J Pathol2021;254:307-31 PMCID:PMC8013908

[47]

Yang L,Liu J.COVID-19: immunopathogenesis and immunotherapeutics.Signal Transduct Target Ther2020;5:128 PMCID:PMC7381863

[48]

Centers for Disease Control and Prevention (CDC). Long COVID basics. Available from: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/. [Last accessed on 8 Aug 2024]

[49]

Chevinsky JR,Lavery AM.Late conditions diagnosed 1-4 months following an initial coronavirus disease 2019 (COVID-19) encounter: A matched-cohort study using inpatient and outpatient administrative data - United States, 1 March-30 June 2020.Clin Infect Dis2021;73:S5-16 PMCID:PMC8135331

[50]

O’Laughlin KN, Thompson M, Hota B, et al; INSPIRE Investigators. Study protocol for the Innovative Support for Patients with SARS-COV-2 Infections Registry (INSPIRE): a longitudinal study of the medium and long-term sequelae of SARS-CoV-2 infection. PLoS One 2022;17:e0264260. PMCID:PMC8893622

[51]

Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis 2022;22:e102-7. PMCID:PMC8691845

[52]

Carfì A, Bernabei R, Landi F; Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 2020;324:603-5. PMCID:PMC7349096

[53]

Takao M.Neurological post-acute sequelae of SARS-CoV-2 infection.Psychiatry Clin Neurosci2023;77:72-83 PMCID:PMC9538807

[54]

Shami-shah A,Walt DR.Advances in extracellular vesicle isolation methods: a path towards cell-type specific EV isolation.Extracell Vesicles Circ Nucleic Acids2023;4:447-60

[55]

Malhotra S,Dobhal G,Nann T.Novel devices for isolation and detection of bacterial and mammalian extracellular vesicles.Mikrochim Acta2021;188:139

[56]

Pesce E,Cordiglieri C.Exosomes recovered from the plasma of COVID-19 patients expose SARS-CoV-2 spike-derived fragments and contribute to the adaptive immune response.Front Immunol2021;12:785941 PMCID:PMC8801440

[57]

Troyer Z,Tabler CO.Extracellular vesicles carry SARS-CoV-2 spike protein and serve as decoys for neutralizing antibodies.J Extracell Vesicles2021;10:e12112 PMCID:PMC8213968

[58]

Berry F,Majidipur A.Proviral role of human respiratory epithelial cell-derived small extracellular vesicles in SARS-CoV-2 infection.J Extracell Vesicles2022;11:e12269 PMCID:PMC9587708

[59]

Xia B,Luo RH.Extracellular vesicles mediate antibody-resistant transmission of SARS-CoV-2.Cell Discov2023;9:2 PMCID:PMC9821354

[60]

Serretiello E,Smimmo A.Extracellular vesicles as a translational approach for the treatment of COVID-19 disease: an updated overview.Viruses2023;15:1976 PMCID:PMC10611252

[61]

Choi D,Montermini L.Quantitative proteomics and biological activity of extracellular vesicles engineered to express SARS-CoV-2 spike protein.J Extracell Biol2022;1:e58 PMCID:PMC9874654

[62]

McNamara RP.Modern techniques for the isolation of extracellular vesicles and viruses.J Neuroimmune Pharmacol2020;15:459-72 PMCID:PMC7065924

[63]

Kongsomros S,Panachan J.Comparison of viral inactivation methods on the characteristics of extracellular vesicles from SARS-CoV-2 infected human lung epithelial cells.J Extracell Vesicles2022;11:e12291 PMCID:PMC9721205

[64]

Chutipongtanate S,Pongsakul N.Anti-SARS-CoV-2 effect of extracellular vesicles released from mesenchymal stem cells.J Extracell Vesicles2022;11:e12201 PMCID:PMC8920959

[65]

Park JH,Lim CW.Antiviral effects of miRNAs in extracellular vesicles against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mutations in SARS-CoV-2 RNA virus. bioRxiv. [Preprint] Jul 27, 2020 [accessed on 2024 Aug 8]. Available from: https://doi.org/10.1101/2020.07.27.190561.

[66]

Sengupta V,Lazo A,Nolan A.Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19.Stem Cells Dev2020;29:747-54 PMCID:PMC7310206

[67]

El-Shennawy L,Dashzeveg NK.Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2.Nat Commun2022;13:405 PMCID:PMC8776790

[68]

Barberis E,Falasca M.Circulating exosomes are strongly involved in SARS-CoV-2 infection.Front Mol Biosci2021;8:632290 PMCID:PMC7937875

[69]

Bautista-Vargas M,Cañas CA.Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19.J Thromb Thrombolysis2020;50:479-83 PMCID:PMC7282470

[70]

Rosell A,von Meijenfeldt F.Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality-brief report.Arterioscler Thromb Vasc Biol2021;41:878-82 PMCID:PMC7837685

[71]

Craddock V,Spikes L.Persistent circulation of soluble and extracellular vesicle-linked Spike protein in individuals with postacute sequelae of COVID-19.J Med Virol2023;95:e28568 PMCID:PMC10048846

[72]

Peluso MJ,Mustapic M.SARS-CoV-2 and mitochondrial proteins in neural-derived exosomes of COVID-19.Ann Neurol2022;91:772-81 PMCID:PMC9082480

[73]

Sun B,Peluso MJ.Characterization and biomarker analyses of post-COVID-19 complications and neurological manifestations.Cells2021;10:386 PMCID:PMC7918597

[74]

Pereira AC,Cunha MV.When FLOW-FISH met FACS: combining multiparametric, dynamic approaches for microbial single-cell research in the total environment.Sci Total Environ2022;806:150682

[75]

Pang K,Zhu Y.Advanced flow cytometry for biomedical applications.J Biophotonics2023;16:e202300135

[76]

Di Bella MA. Overview and update on extracellular vesicles: considerations on exosomes and their application in modern medicine.Biology2022;11:804 PMCID:PMC9220244

[77]

Liu H,Xue C,Chen C.Analysis of extracellular vesicle DNA at the single-vesicle level by nano-flow cytometry.J Extracell Vesicles2022;11:e12206 PMCID:PMC8977970

[78]

Kwon Y.Methods to analyze extracellular vesicles at single particle level.Micro Nano Syst Lett2022;10:14

[79]

Gul B,Khan S,Ahmad I.Characterization of extracellular vesicles by flow cytometry: challenges and promises.Micron2022;161:103341

[80]

Notarbartolo S,Bandera A.Integrated longitudinal immunophenotypic, transcriptional and repertoire analyses delineate immune responses in COVID-19 patients.Sci Immunol2021;6:eabg5021

[81]

Kiaee F,Shahi H.Immunophenotype and function of circulating myeloid derived suppressor cells in COVID-19 patients.Sci Rep2022;12:22570 PMCID:PMC9799710

[82]

Gurshaney S,Ezhakunnel K.Metabolic dysregulation impairs lymphocyte function during severe SARS-CoV-2 infection.Commun Biol2023;6:374 PMCID:PMC10080180

[83]

Laing AG,Del Molino Del Barrio I.A dynamic COVID-19 immune signature includes associations with poor prognosis.Nat Med2020;26:1623-35

[84]

Kreutmair S,Núñez NG.Distinct immunological signatures discriminate severe COVID-19 from non-SARS-CoV-2-driven critical pneumonia.Immunity2021;54:1578-93.e5 PMCID:PMC8106882

[85]

Yu S,Chen S.Distinct immune signatures discriminate between asymptomatic and presymptomatic SARS-CoV-2pos subjects.Cell Res2021;31:1148-62 PMCID:PMC8461439

[86]

Zhao XN,Cui XM.Single-cell immune profiling reveals distinct immune response in asymptomatic COVID-19 patients.Signal Transduct Target Ther2021;6:342 PMCID:PMC8443960

[87]

Bourgoin P,Barbaresi A.CD169 and CD64 could help differentiate bacterial from CoVID-19 or other viral infections in the Emergency Department.Cytometry A2021;99:435-45 PMCID:PMC8014466

[88]

Affandi AJ,Grabowska J.CD169 defines activated CD14+ monocytes with enhanced CD8+ T cell activation capacity.Front Immunol2021;12:697840 PMCID:PMC8356644

[89]

Michel M,Ait Belkacem I.A rapid, easy, and scalable whole blood monocyte CD169 assay for outpatient screening during SARS-CoV-2 outbreak, and potentially other emerging disease outbreaks.SAGE Open Med2022;10:20503121221115483 PMCID:PMC9358337

[90]

Minutolo A,Fanelli M.High CD169 monocyte/lymphocyte ratio reflects immunophenotype disruption and oxygen need in COVID-19 patients.Pathogens2021;10:1639 PMCID:PMC8715749

[91]

Fanelli M,Maracchioni C.Persistence of circulating CD169+monocytes and HLA-DR downregulation underline the immune response impairment in PASC individuals: the potential contribution of different COVID-19 pandemic waves.Curr Res Microb Sci2024;6:100215 PMCID:PMC10767315

[92]

Balestrieri E,Petrone V.Evidence of the pathogenic HERV-W envelope expression in T lymphocytes in association with the respiratory outcome of COVID-19 patients.EBioMedicine2021;66:103341 PMCID:PMC8082064

[93]

Munblit D,Akrami A,Olliaro P.Long COVID: aiming for a consensus.Lancet Respir Med2022;10:632-4 PMCID:PMC9067938

[94]

Sherif ZA,Connors TJ,Reeves WB.RECOVER Mechanistic Pathway Task ForcePathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC).Elife2023;12:e86002 PMCID:PMC10032659

[95]

Parotto M,Howe K.Post-acute sequelae of COVID-19: understanding and addressing the burden of multisystem manifestations.Lancet Respir Med2023;11:739-54

[96]

Ryan FJ,Masavuli MG.Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection.BMC Med2022;20:26 PMCID:PMC8758383

[97]

Phetsouphanh C,Wilson DB.Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection.Nat Immunol2022;23:210-6

[98]

Santa Cruz A,Azarias-da-Silva M.Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8+β7 integrin+ T cells and anti-SARS-CoV-2 IgA response.Nat Commun2023;14:1772 PMCID:PMC10061413

[99]

Woodruff MC,Anam FA.Chronic inflammation, neutrophil activity, and autoreactivity splits long COVID.Nat Commun2023;14:4201 PMCID:PMC10349085

[100]

Minutolo A,Fanelli M.Thymosin alpha 1 restores the immune homeostasis in lymphocytes during Post-Acute sequelae of SARS-CoV-2 infection.Int Immunopharmacol2023;118:110055 PMCID:PMC10030336

[101]

Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy.Wiley Interdiscip Rev Nanomed Nanobiotechnol2023;15:e1835 PMCID:PMC10078256

[102]

Qiu L,Zhu L,Sun N.Current advances in technologies for single extracellular vesicle analysis and its clinical applications in cancer diagnosis.Biosensors2023;13:129 PMCID:PMC9856491

[103]

Welsh JA,Bremer M.A compendium of single extracellular vesicle flow cytometry.J Extracell Vesicles2023;12:e12299 PMCID:PMC9911638

[104]

Woud WW,Mul E.An imaging flow cytometry-based methodology for the analysis of single extracellular vesicles in unprocessed human plasma.Commun Biol2022;5:633 PMCID:PMC9243126

[105]

Ender F,Bubnoff NV.Detection and quantification of extracellular vesicles via FACS: membrane labeling matters!.Int J Mol Sci2019;21:291 PMCID:PMC6981603

[106]

Hilton SH.Advances in the analysis of single extracellular vesicles: a critical review.Sens Actuators Rep2021;3:100052 PMCID:PMC8792802

[107]

Buzas EI.The roles of extracellular vesicles in the immune system.Nat Rev Immunol2023;23:236-50 PMCID:PMC9361922

[108]

Davidson SM,Aikawa E.Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles.Cardiovasc Res2023;119:45-63 PMCID:PMC10233250

[109]

Chen AT,Zhu WL.Coagulation disorders and thrombosis in COVID-19 patients and a possible mechanism involving endothelial cells: a review.Aging Dis2022;13:144-56 PMCID:PMC8782553

[110]

Biswas I.Coagulation disorders in COVID-19: role of Toll-like receptors.J Inflamm Res2020;13:823-8 PMCID:PMC7605922

[111]

Mezine F,Philippe A.Increased circulating CD62E+ endothelial extracellular vesicles predict severity and in- hospital mortality of COVID-19 patients.Stem Cell Rev Rep2023;19:114-9 PMCID:PMC9387889

[112]

Eustes AS.The role of platelet-derived extracellular vesicles in immune-mediated thrombosis.Int J Mol Sci2022;23:7837 PMCID:PMC9320310

[113]

Goubran H,Sabry W,Burnouf T.Platelet and extracellular vesicles in COVID-19 infection and its vaccines.Transfus Apher Sci2022;61:103459 PMCID:PMC9122775

[114]

Puhm F,Lacasse E.Platelet activation by SARS-CoV-2 implicates the release of active tissue factor by infected cells.Blood Adv2022;6:3593-605 PMCID:PMC9023084

[115]

Eldahshan M,Alsadek AM.Prognostic significance of platelet activation marker CD62P in hospitalized Covid-19 patients.Clin Lab2022;68:

[116]

Setua S,Dzieciatkowska M.Coagulation potential and the integrated omics of extracellular vesicles from COVID-19 positive patient plasma.Sci Rep2022;12:22191 PMCID:PMC9780627

[117]

Brambilla M,Becchetti A.Head-to-head comparison of tissue factor-dependent procoagulant potential of small and large extracellular vesicles in healthy subjects and in patients with SARS-CoV-2 infection.Biology2023;12:1233 PMCID:PMC10525820

[118]

Burrello J,Gauthier LG.Risk stratification of patients with SARS-CoV-2 by tissue factor expression in circulating extracellular vesicles.Vascul Pharmacol2022;145:106999 PMCID:PMC9116046

[119]

Balbi C,Bolis S.Circulating extracellular vesicles are endowed with enhanced procoagulant activity in SARS-CoV-2 infection.EBioMedicine2021;67:103369 PMCID:PMC8104913

[120]

Campello E,Simion C.Longitudinal trend of plasma concentrations of extracellular vesicles in patients hospitalized for COVID-19.Front Cell Dev Biol2021;9:770463 PMCID:PMC8801799

[121]

Aharon A,Kinaani F.Extracellular vesicles of COVID-19 patients reflect inflammation, thrombogenicity, and disease severity.Int J Mol Sci2023;24:5918 PMCID:PMC10054500

[122]

Taxiarchis A,Antovic J.Extracellular vesicles in plasma and cerebrospinal fluid in patients with COVID-19 and neurological symptoms.Int J Lab Hematol2024;46:42-9

[123]

Yim KHW,Chahwan R.Serum extracellular vesicles profiling is associated with COVID-19 progression and immune responses.J Extracell Biol2022;1:e37 PMCID:PMC9088353

[124]

Chen L,Yao M.COVID-19 plasma exosomes promote proinflammatory immune responses in peripheral blood mononuclear cells.Sci Rep2022;12:21779 PMCID:PMC9756928

[125]

Caponnetto F,Stefanizzi D.Extracellular vesicle features are associated with COVID-19 severity.J Cell Mol Med2023;27:4107-17 PMCID:PMC10746943

[126]

Cummings SE,St-Denis Bissonnette F.SARS-CoV-2 antigen-carrying extracellular vesicles activate T cell responses in a human immunogenicity model.iScience2024;27:108708 PMCID:PMC10788222

[127]

Martins-Gonçalves R,Bozza PT.Acute to post-acute COVID-19 thromboinflammation persistence: mechanisms and potential consequences.Curr Res Immunol2023;4:100058 PMCID:PMC10083200

[128]

Raman B,Lüscher TF.Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus.Eur Heart J2022;43:1157-72 PMCID:PMC8903393

[129]

Monje M.The neurobiology of long COVID.Neuron2022;110:3484-96 PMCID:PMC9537254

[130]

George MS,Rollings C.Extracellular vesicles in COVID-19 convalescence can regulate T cell metabolism and function.iScience2023;26:107280 PMCID:PMC10371842

[131]

Lamers MM.SARS-CoV-2 pathogenesis.Nat Rev Microbiol2022;20:270-84

[132]

Amarasinghe I,Hill AF.Cellular communication through extracellular vesicles and lipid droplets.J Extracell Biol2023;2:e77 PMCID:PMC11080893

[133]

Stratman AN,Stahl PD.The microenvironment-a general hypothesis on the homeostatic function of extracellular vesicles.FASEB Bioadv2022;4:284-97 PMCID:PMC9065581

[134]

Visan KS,Ham S.Comparative analysis of tangential flow filtration and ultracentrifugation, both combined with subsequent size exclusion chromatography, for the isolation of small extracellular vesicles.J Extracell Vesicles2022;11:e12266 PMCID:PMC9486818

[135]

Lam SM,Shui G.Neurological aspects of SARS-CoV-2 infection: lipoproteins and exosomes as Trojan horses.Trends Endocrinol Metab2022;33:554-68 PMCID:PMC9058057

[136]

Del Molino Del Barrio I, Hayday TS, Laing AG, Hayday AC, Di Rosa F. COVID-19: using high-throughput flow cytometry to dissect clinical heterogeneity.Cytometry A2023;103:117-26 PMCID:PMC9011838

[137]

Kuiper M,Nieuwland R,van der Pol E.Reliable measurements of extracellular vesicles by clinical flow cytometry.Am J Reprod Immunol2021;85:e13350 PMCID:PMC7900981

[138]

Morales-Kastresana A,Jones JC.Detection and sorting of extracellular vesicles and viruses using nanoFACS.Curr Protoc Cytom2020;95:e81 PMCID:PMC8443073

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/