Endosomal escape mechanisms of extracellular vesicle-based drug carriers: lessons for lipid nanoparticle design

Lasse Hagedorn , David C. Jürgens , Olivia M. Merkel , Benjamin Winkeljann

Extracellular Vesicles and Circulating Nucleic Acids ›› 2024, Vol. 5 ›› Issue (3) : 344 -57.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2024, Vol. 5 ›› Issue (3) :344 -57. DOI: 10.20517/evcna.2024.19
Mini Review

Endosomal escape mechanisms of extracellular vesicle-based drug carriers: lessons for lipid nanoparticle design

Author information +
History +
PDF

Abstract

The rise of biologics and RNA-based therapies challenges the limitations of traditional drug treatments. However, these potent new classes of therapeutics require effective delivery systems to reach their full potential. Lipid nanoparticles (LNPs) have emerged as a promising solution for RNA delivery, but endosomal entrapment remains a critical barrier. In contrast, natural extracellular vesicles (EVs) possess innate mechanisms to overcome endosomal degradation, demonstrating superior endosomal escape (EE) compared to conventional LNPs. This mini review explores the challenges of EE for lipid nanoparticle-based drug delivery, and offers insights into EV escape mechanisms to advance LNP design for RNA therapeutics. We compare the natural EE strategies of EVs with those used in LNPs and highlight contemporary LNP design approaches. By understanding the mechanisms of EE, we will be able to develop more effective drug delivery vehicles, enhancing the delivery and efficacy of RNA-based therapies.

Keywords

RNA therapeutics / drug delivery / lipid nanoparticles / membrane fusion / endosomal escape / extracellular vesicles

Cite this article

Download citation ▾
Lasse Hagedorn, David C. Jürgens, Olivia M. Merkel, Benjamin Winkeljann. Endosomal escape mechanisms of extracellular vesicle-based drug carriers: lessons for lipid nanoparticle design. Extracellular Vesicles and Circulating Nucleic Acids, 2024, 5(3): 344-57 DOI:10.20517/evcna.2024.19

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Roberts TC,Wood MJA.Advances in oligonucleotide drug delivery.Nat Rev Drug Discov2020;19:673-94 PMCID:PMC7419031

[2]

Damase TR,Boada C,Pettigrew RI.The limitless future of RNA therapeutics.Front Bioeng Biotechnol2021;9:628137 PMCID:PMC8012680

[3]

Dowdy SF.Overcoming cellular barriers for RNA therapeutics.Nat Biotechnol2017;35:222-9

[4]

Mitchell MJ,Haley RM,Peppas NA.Engineering precision nanoparticles for drug delivery.Nat Rev Drug Discov2021;20:101-24 PMCID:PMC7717100

[5]

Kesharwani P,Gupta U.PAMAM dendrimers as promising nanocarriers for RNAi therapeutics.Mater Today2015;18:565-72

[6]

Cao W,Pei X.Antibody-siRNA conjugates (ARC): emerging siRNA drug formulation.Med Drug Discov2022;15:100128

[7]

Chernikov IV,Chernolovskaya EL.Current development of siRNA bioconjugates: from research to the clinic.Front Pharmacol2019;10:444 PMCID:PMC6498891

[8]

Cullis PR.Lipid nanoparticle systems for enabling gene therapies.Mol Ther2017;25:1467-75 PMCID:PMC5498813

[9]

Adams D,O'Riordan WD.Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis.N Engl J Med2018;379:11-21

[10]

New Clinical Development Success Rates 2011-2020 Report. Available from: https://www.bio.org/clinical-development-success-rates-and-contributing-factors-2011-2020. [Last accessed on 27 Jun 2024]

[11]

Huotari J.Endosome maturation.EMBO J2011;30:3481-500 PMCID:PMC3181477

[12]

Jovic M,Rahajeng J.The early endosome: a busy sorting station for proteins at the crossroads.Histol Histopathol2010;25:99-112 PMCID:PMC2810677

[13]

Mohrmann K,Oorschot V,van der Sluijs P.Rab4 function in membrane recycling from early endosomes depends on a membrane to cytoplasm cycle.J Biol Chem2002;277:32029-35

[14]

Scott CC,Gruenberg J.Endosome maturation, transport and functions.Semin Cell Dev Biol2014;31:2-10

[15]

Kalluri R.The biology, function, and biomedical applications of exosomes.Science2020;367:eaau6977 PMCID:PMC7717626

[16]

Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles.Nat Rev Mol Cell Biol2018;19:213-28

[17]

Hashemi A,Nasr MP,Provaznik V.Extracellular vesicles and hydrogels: an innovative approach to tissue regeneration.ACS Omega2024;9:6184-218 PMCID:PMC10870307

[18]

Joshi BS,Giepmans BNG.Endocytosis of extracellular vesicles and release of their cargo from endosomes.ACS Nano2020;14:4444-55 PMCID:PMC7199215

[19]

Schlich M,Costabile G.Cytosolic delivery of nucleic acids: the case of ionizable lipid nanoparticles.Bioeng Transl Med2021;6:e10213 PMCID:PMC7995196

[20]

Malone RW,and Verma IM.Cationic liposome-mediated RNA transfection.Proc Natl Acad Sci U S A1989;86:6077-81 PMCID:PMC297778

[21]

Syama K,Chen S,Tam YYC.Development of lipid nanoparticles and liposomes reference materials (II): cytotoxic profiles.Sci Rep2022;12:18071 PMCID:PMC9610362

[22]

Lv H,Wang B,Yan J.Toxicity of cationic lipids and cationic polymers in gene delivery.J Control Release2006;114:100-9

[23]

Mui BL,Jayaraman M.Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles.Mol Ther Nucleic Acids2013;2:e139 PMCID:PMC3894582

[24]

Knop K,Fischer D.Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives.Angew Chem Int Ed Engl2010;49:6288-308

[25]

Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy.Adv Drug Deliv Rev2022;188:114416 PMCID:PMC9250827

[26]

Hatakeyama H,Harashima H.The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors.Biol Pharm Bull2013;36:892-9

[27]

Nogueira SS,Maxeiner K.Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery.ACS Appl Nano Mater2020;3:10634-45

[28]

Sanchez AJDS,Echeverri ES.Substituting poly(ethylene glycol) lipids with poly(2-ethyl-2-oxazoline) lipids improves lipid nanoparticle repeat dosing.Adv Healthc Mater2024;13:e2304033

[29]

Shepherd SJ,Mitchell MJ.Microfluidic formulation of nanoparticles for biomedical applications.Biomaterials2021;274:120826 PMCID:PMC8752123

[30]

Jürgens DC,Porras-gonzalez D.Lab-scale siRNA and mRNA LNP manufacturing by various microfluidic mixing techniques - an evaluation of particle properties and efficiency.OpenNano2023;12:100161

[31]

O’Brien Laramy MN,Cebrero YM.Process robustness in lipid nanoparticle production: a comparison of microfluidic and turbulent jet mixing.Mol Pharm2023;20:4285-96

[32]

Akinc A,Manoharan M.The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs.Nat Nanotechnol2019;14:1084-7

[33]

Sahay G,Alabi C.Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling.Nat Biotechnol2013;31:653-8 PMCID:PMC3814166

[34]

Gilleron J,Zeigerer A.Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape.Nat Biotechnol2013;31:638-46

[35]

Sharma R,Bettencourt RC,Konieczny SF.Effects of the incorporation of a hydrophobic middle block into a PEG-polycation diblock copolymer on the physicochemical and cell interaction properties of the polymer-DNA complexes.Biomacromolecules2008;9:3294-307 PMCID:PMC3339030

[36]

Schoenmaker L,Kulkarni JA.mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability.Int J Pharm2021;601:120586 PMCID:PMC8032477

[37]

Heyes J,Bremner K.Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids.J Control Release2005;107:276-87

[38]

Xu Y,Xu S,Li B.Rational design and combinatorial chemistry of ionizable lipids for RNA delivery.J Mater Chem B2023;11:6527-39

[39]

Philipp J,Reiser A.pH-dependent structural transitions in cationic ionizable lipid mesophases are critical for lipid nanoparticle function.Proc Natl Acad Sci U S A2023;120:e2310491120 PMCID:PMC10723131

[40]

Pabst G.Exploring membrane asymmetry and its effects on membrane proteins.Trends Biochem Sci2024;49:333-45

[41]

Escalona-Rayo O,Knol RA.In vitro and in vivo evaluation of clinically-approved ionizable cationic lipids shows divergent results between mRNA transfection and vaccine efficacy.Biomed Pharmacother2023;165:115065

[42]

Chen Z,Yang J.Modular design of biodegradable ionizable lipids for improved mRNA delivery and precise cancer metastasis delineation in vivo.J Am Chem Soc2023;145:24302-14

[43]

Pattipeiluhu R,Hendrix MMRM,Kros A.Liquid crystalline inverted lipid phases encapsulating siRNA enhance lipid nanoparticle mediated transfection.Nat Commun2024;15:1303 PMCID:PMC10861598

[44]

Chatterjee S,Sharma P.Endosomal escape: A bottleneck for LNP-mediated therapeutics.Proc Natl Acad Sci U S A2024;121:e2307800120 PMCID:PMC10945858

[45]

Winkeljann B,Merkel OM.Engineering poly- and micelleplexes for nucleic acid delivery - A reflection on their endosomal escape.J Control Release2023;353:518-34 PMCID:PMC9900387

[46]

Omo-Lamai S,Patel MN.Lipid nanoparticle-associated inflammation is triggered by sensing of endosomal damage: engineering endosomal escape without side effects.bioRxiv2024;preprint: PMCID:PMC11042321

[47]

Maugeri M,Papadimitriou A.Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells.Nat Commun2019;10:4333 PMCID:PMC6760118

[48]

Welsh JA, Goberdhan DCI, O’Driscoll L, et al; MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches.J Extracell Vesicles2024;13:e12404 PMCID:PMC10850029

[49]

Zhao D,Li S.Apoptotic body-mediated intercellular delivery for enhanced drug penetration and whole tumor destruction.Sci Adv2021;7:eabg0880 PMCID:PMC8051881

[50]

Liu Y,Gao D.Engineered apoptotic bodies hitchhiking across the blood-brain barrier achieved a combined photothermal-chemotherapeutic effect against glioma.Theranostics2023;13:2966-78 PMCID:PMC10240828

[51]

Kooijmans SAA,Braeckmans K.Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles.J Control Release2013;172:229-38

[52]

Rädler J,Zickler A.Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading.Mol Ther2023;31:1231-50 PMCID:PMC10188647

[53]

Rezaie J,Etemadi T.A review on exosomes application in clinical trials: perspective, questions, and challenges.Cell Commun Signal2022;20:145 PMCID:PMC9483361

[54]

O'Brien K,Ughetto S,Breakefield XO.RNA delivery by extracellular vesicles in mammalian cells and its applications.Nat Rev Mol Cell Biol2020;21:585-606 PMCID:PMC7249041

[55]

Jin Y,Zhang W,Feng Q.Extracellular signals regulate the biogenesis of extracellular vesicles.Biol Res2022;55:35 PMCID:PMC9701380

[56]

Liu C,Wang S,Yang X.Identification of the SNARE complex that mediates the fusion of multivesicular bodies with the plasma membrane in exosome secretion.J Extracell Vesicles2023;12:e12356 PMCID:PMC10497535

[57]

Bonsergent E,Buchrieser J,Théry C.Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells.Nat Commun2021;12:1864 PMCID:PMC7994380

[58]

Heath N,de Oliveria TM.Endosomal escape enhancing compounds facilitate functional delivery of extracellular vesicle cargo.Nanomedicine2019;14:2799-814

[59]

Brock DJ,Jiang M.Efficient cell delivery mediated by lipid-specific endosomal escape of supercharged branched peptides.Traffic2018;19:421-35 PMCID:PMC5948172

[60]

Shete HK,Patravale VB.Endosomal escape: a bottleneck in intracellular delivery.J Nanosci Nanotechnol2014;14:460-74

[61]

Gandek TB,Nagelkerke A.A comparison of cellular uptake mechanisms, delivery efficacy, and intracellular fate between liposomes and extracellular vesicles.Adv Healthc Mater2023;12:e2300319

[62]

Bebelman MP,Huveneers S,Pegtel DM.Real-time imaging of multivesicular body-plasma membrane fusion to quantify exosome release from single cells.Nat Protoc2020;15:102-21

[63]

Perrin P,Janssen H.Retrofusion of intralumenal MVB membranes parallels viral infection and coexists with exosome release.Curr Biol2021;31:3884-93.e4 PMCID:PMC8445322

[64]

Ribovski L,Gao J.Breaking free: endocytosis and endosomal escape of extracellular vesicles.Extracell Vesicles Circ Nucleic Acids2023;4:283-305

[65]

Vermeulen LMP,Remaut K.The proton sponge hypothesis: fable or fact?.Eur J Pharm Biopharm2018;129:184-90

[66]

Russell AE,Witwer KW.Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop.J Extracell Vesicles2019;8:1684862 PMCID:PMC6853251

[67]

Kopac T.Protein corona, understanding the nanoparticle-protein interactions and future perspectives: a critical review.Int J Biol Macromol2021;169:290-301

[68]

Schrijver DP,Hofstraat SRJ.Nanoengineering apolipoprotein A1‐based immunotherapeutics.Adv Ther2021;4:2100083

[69]

Dar SA,Qureshi A.siRNAmod: a database of experimentally validated chemically modified siRNAs.Sci Rep2016;6:20031 PMCID:PMC4730238

[70]

Nie T,Shirley M.Vutrisiran: a review in polyneuropathy of hereditary transthyretin-mediated amyloidosis.Drugs2023;83:1425-32

[71]

Brown CR,Qin J.Investigating the pharmacodynamic durability of GalNAc-siRNA conjugates.Nucleic Acids Res2020;48:11827-44 PMCID:PMC7708070

[72]

Robb KP,Shi Y,Martin I.Failure to launch commercially-approved mesenchymal stromal cell therapies: what’s the path forward? Proceedings of the International Society for Cell & Gene Therapy (ISCT) Annual Meeting Roundtable held in May 2023, Palais des Congrès de Paris, Organized by the ISCT MSC Scientific Committee.Cytotherapy2024;26:413-7

[73]

Prasannan A,Tsai HC,Lin CP.Synthesis and evaluation of the targeted binding of RGD-containing PEGylated-PEI/DNA polyplex micelles as radiotracers for a tumor-targeting imaging probe.RSC Adv2015;5:107455-65

[74]

Hatit MZC,Dobrowolski CN.Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles.Nat Nanotechnol2022;17:310-8 PMCID:PMC9082280

AI Summary AI Mindmap
PDF

322

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/