Harnessing genetically engineered cell membrane-derived vesicles as biotherapeutics

Xiaohong Li , Yuting Wei , Zhirang Zhang , Xudong Zhang

Extracellular Vesicles and Circulating Nucleic Acids ›› 2024, Vol. 5 ›› Issue (1) : 44 -63.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2024, Vol. 5 ›› Issue (1) :44 -63. DOI: 10.20517/evcna.2023.58
Review

Harnessing genetically engineered cell membrane-derived vesicles as biotherapeutics

Author information +
History +
PDF

Abstract

Cell membrane-derived vesicles (CMVs) are particles generated from living cells, including extracellular vesicles (EVs) and artificial extracellular vesicles (aEVs) prepared from cell membranes. CMVs possess considerable potential in drug delivery, regenerative medicine, immunomodulation, disease diagnosis, etc. owing to their stable lipid bilayer structure, favorable biocompatibility, and low toxicity. Although the majority of CMVs inherit certain attributes from the original cells, it is still difficult to execute distinct therapeutic functions, such as organ targeting, signal regulation, and exogenous biotherapeutic supplementation. Hence, engineering CMVs by genetic engineering, chemical modification, and hybridization is a promising way to endow CMVs with specific functions and open up novel vistas for applications. In particular, there is a growing interest in genetically engineered CMVs harnessed to exhibit biotherapeutics. Herein, we outline the preparation strategies and their characteristics for purifying CMVs. Additionally, we review the advances of genetically engineered CMVs utilized to target organs, regulate signal transduction, and deliver biomacromolecules and chemical drugs. Furthermore, we also summarize the emerging therapeutic applications of genetically engineered CMVs in addressing tumors, diabetes, systemic lupus erythematosus, and cardiovascular diseases.

Keywords

EVs / genetically engineering / biomedicine / drug delivery

Cite this article

Download citation ▾
Xiaohong Li, Yuting Wei, Zhirang Zhang, Xudong Zhang. Harnessing genetically engineered cell membrane-derived vesicles as biotherapeutics. Extracellular Vesicles and Circulating Nucleic Acids, 2024, 5(1): 44-63 DOI:10.20517/evcna.2023.58

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities.Nat Rev Drug Discov2013;12:347-57.

[2]

Mathieu M,Lavieu G.Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication.Nat Cell Biol2019;21:9-17

[3]

Rädler J,Zickler A.Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading.Mol Ther2023;31:1231-50. PMCID:PMC10188647

[4]

Jeppesen DK,Franklin JL.Extracellular vesicles and nanoparticles: emerging complexities.Trends Cell Biol2023;33:667-81. PMCID:PMC10363204

[5]

Zhang X,Gu J.Engineered extracellular vesicles for cancer therapy.Adv Mater2021;33:e2005709

[6]

Munagala R,Jeyabalan J.Bovine milk-derived exosomes for drug delivery.Cancer Lett2016;371:48-61 PMCID:PMC4706492

[7]

Jeppesen DK,Franklin JL.Reassessment of exosome composition.Cell2019;177:428-445.e18 PMCID:PMC6664447

[8]

Buzas EI.The roles of extracellular vesicles in the immune system.Nat Rev Immunol2023;23:236-50 PMCID:PMC9361922

[9]

Raposo G.Extracellular vesicles - on the cusp of a new language in the biological sciences.Extracell Vesicles Circ Nucleic Acids2023;4:240-54.

[10]

Dooley K,Xu K.A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties.Mol Ther2021;29:1729-43. PMCID:PMC8116569

[11]

Liang Y,Lu J.Engineering exosomes for targeted drug delivery.Theranostics2021;11:3183-95 PMCID:PMC7847680

[12]

Harding C,Stahl P.Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding.Eur J Cell Biol1984;35:256-63

[13]

Buzas EI,Nagy G,Gay S.Emerging role of extracellular vesicles in inflammatory diseases.Nat Rev Rheumatol2014;10:356-64

[14]

Sidhom K,Saleem A.A review of exosomal isolation methods: is size exclusion chromatography the best option?.Int J Mol Sci2020;21:6466 PMCID:PMC7556044

[15]

Yang B,Shi J.Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms.Adv Mater2019;31:e1802896.

[16]

Gurunathan S,Jeyaraj M,Kim JH.Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes.Cells2019;8:307 PMCID:PMC6523673

[17]

Tauro BJ,Mathias RA.Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes.Methods2012;56:293-304.

[18]

Linares R,Gounou C,Brisson AR.High-speed centrifugation induces aggregation of extracellular vesicles.J Extracell Vesicles2015;4:29509. PMCID:PMC4689953

[19]

Van Deun J,Sormunen R.The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling.J Extracell Vesicles2014;3 PMCID:PMC4169610

[20]

Mol EA,Doevendans PA,Vader P.Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation.Nanomedicine2017;13:2061-5

[21]

Contreras-Naranjo JC,Ugaz VM.Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine.Lab Chip2017;17:3558-77. PMCID:PMC5656537

[22]

Cheng Q,Yao B.Genetically engineered-cell-membrane nanovesicles for cancer immunotherapy.Adv Sci2023;10:e2302131 PMCID:PMC10502869

[23]

Jang SC,Yoon CM.Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors.ACS Nano2013;7:7698-710.

[24]

Fuhrmann G,Mazo M,Stevens MM.Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins.J Control Release2015;205:35-44

[25]

Haney MJ,Zhao Y.Exosomes as drug delivery vehicles for Parkinson's disease therapy.J Control Release2015;207:18-30 PMCID:PMC4430381

[26]

Jhan YY,Palou Zuniga G.Engineered extracellular vesicles with synthetic lipids via membrane fusion to establish efficient gene delivery.Int J Pharm2020;573:118802

[27]

Wen Y,Soliwoda A.Cell-derived nanovesicles prepared by membrane extrusion are good substitutes for natural extracellular vesicles.Extracell Vesicle2022;1:100004 PMCID:PMC9794200

[28]

Li J,Wun B,King MR.Genetic engineering of platelets to neutralize circulating tumor cells.J Control Release2016;228:38-47 PMCID:PMC4828270

[29]

Lewis ND,Kirwin K.Exosome surface display of IL12 results in tumor-retained pharmacology with superior potency and limited systemic exposure compared with recombinant IL12.Mol Cancer Ther2021;20:523-34

[30]

Wu WC,Xiao D.Engineered extracellular vesicles encapsulated Bryostatin-1 as therapy for neuroinflammation.Nanoscale2022;14:2393-410.

[31]

Xu F,Yang Q.Engineered extracellular vesicles with SHP2 high expression promote mitophagy for alzheimer's disease treatment.Adv Mater2022;34:e2207107

[32]

Lv P,Chen X.Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: a versatile platform for cancer virotherapy.Nano Lett2019;19:2993-3001

[33]

Zhang P,Qin Z.Genetically engineered liposome-like nanovesicles as active targeted transport platform.Adv Mater2018;30:1705350.

[34]

Liu C,Xiang X.A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy.Nat Nanotechnol2022;17:531-40

[35]

Komuro H,Lauro K.Advances of engineered extracellular vesicles-based therapeutics strategy.Sci Technol Adv Mater2022;23:655-81. PMCID:PMC9586594

[36]

Cheng Q,Han M,Lenz HJ.Reprogramming exosomes as nanoscale controllers of cellular immunity.J Am Chem Soc2018;140:16413-7. PMCID:PMC6469991

[37]

Cheng Q,Smbatyan G,Lenz HJ.Eliciting anti-cancer immunity by genetically engineered multifunctional exosomes.Mol Ther2022;30:3066-77 PMCID:PMC9481992

[38]

Xue T,Fang T.Cellular vesicles expressing PD-1-blocking scFv reinvigorate T cell immunity against cancer.Nano Res2022;15:5295-5304.

[39]

Lian Z.Functional peptide-based drug delivery systems.J Mater Chem B2020;8:6517-29

[40]

Tian Y,Song J.A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy.Biomaterials2014;35:2383-90.

[41]

Zhou Y,Liu M,Quan Y.Tumor-specific delivery of KRAS siRNA with iRGD-exosomes efficiently inhibits tumor growth.ExRNA2019;1:28.

[42]

Zhu Q,Yang Y.Embryonic stem cells-derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy.Adv Sci2019;6:1801899 PMCID:PMC6425428

[43]

Tao SC,Wei WJ.Polymeric coating on β-TCP scaffolds provides immobilization of small extracellular vesicles with surface-functionalization and ZEB1-Loading for bone defect repair in diabetes mellitus.Biomaterials2022;283:121465.

[44]

Kim MS,Zhao Y.Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations.Nanomedicine2018;14:195-204

[45]

Jang SC,Moniz RJ.ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance.Commun Biol2021;4:497 PMCID:PMC8062530

[46]

Huang CC,Lu Y.Functionally engineered extracellular vesicles improve bone regeneration.Acta Biomater2020;109:182-94 PMCID:PMC8040700

[47]

Song Y,Lei S.Silk sericin patches delivering miRNA-29-enriched extracellular vesicles-decorated myoblasts (SPEED) enhances regeneration and functional repair after severe skeletal muscle injury.Biomaterials2022;287:121630.

[48]

McAndrews KM,Chronopoulos A,Kugeratski FG.Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic Kras(G12D) in pancreatic cancer.Life Sci Alliance2021;4:e202000875 PMCID:PMC8321670

[49]

Gee P,Okuzaki Y.Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping.Nat Commun2020;11:1334 PMCID:PMC7070030

[50]

Yao X,Yoo K.Engineered extracellular vesicles as versatile ribonucleoprotein delivery vehicles for efficient and safe CRISPR genome editing.J Extracell Vesicles2021;10:e12076 PMCID:PMC7962171

[51]

Bai J,Liu R.Engineered targeting tLyp-1 exosomes as gene therapy vectors for efficient delivery of siRNA into lung cancer cells.Asian J Pharm Sci2020;15:461-71 PMCID:PMC7486479

[52]

Bellavia D,Calabrese G.Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth.Theranostics2017;7:1333-45 PMCID:PMC5399597

[53]

Lu M,Shao W.Photoactivatable silencing extracellular vesicle (pasev) sensitizes cancer immunotherapy.Adv Mater2022;34:e2204765.

[54]

Wu S,Pan J.Integrated nanorod-mediated PD-L1 downregulation in combination with oxidative-stress immunogene therapy against cancer.Adv Healthc Mater2023;12:e2300110

[55]

Haltom AR,Hensel J.Engineered exosomes targeting MYC reverse the proneural-mesenchymal transition and extend survival of glioblastoma.Extracell Vesicle2022;1:100014 PMCID:PMC10373511

[56]

Sun Q,Zhang C,Han Z.Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends.Signal Transduct Target Ther2023;8:320 PMCID:PMC10460796

[57]

Ishida Y,Shibahara K.Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death.EMBO J1992;11:3887-95 PMCID:PMC556898

[58]

Freeman GJ,Iwai Y.Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation.J Exp Med2000;192:1027-34 PMCID:PMC2193311

[59]

Latchman Y,Chernova T.PD-L2 is a second ligand for PD-1 and inhibits T cell activation.Nat Immunol2001;2:261-8

[60]

Kornepati AVR,Curiel TJ.Programmed death ligand 1 signals in cancer cells.Nat Rev Cancer2022;22:174-89

[61]

Li B,Li Y.Engineered T cell extracellular vesicles displaying PD-1 boost anti-tumor immunity.Nano Today2022;46:101606.

[62]

Zhang X,Wang J.PD-1 blockade cellular vesicles for cancer immunotherapy.Adv Mater2018;30:e1707112

[63]

Xu F,Xu J.Engineering of dendritic cell bispecific extracellular vesicles for tumor-targeting immunotherapy.Cell Rep2023;42:113138.

[64]

Li L,Meng F.Genetic engineering cellular vesicles expressing CD64 as checkpoint antibody carrier for cancer immunotherapy.Theranostics2021;11:6033-43. PMCID:PMC8058713

[65]

Fang W,Lin Z.Engineered IL-15/IL-15R α -expressing cellular vesicles promote T cell anti-tumor immunity.Extracell Vesicles2023;2:100021.

[66]

Tian T,Erel-Akbaba G.Immune checkpoint inhibition in GBM primed with radiation by engineered extracellular vesicles.ACS Nano2022;16:1940-53. PMCID:PMC9020451

[67]

Kuderer NM,Lustberg MB.Mitigating acute chemotherapy-associated adverse events in patients with cancer.Nat Rev Clin Oncol2022;19:681-97.

[68]

Keklikoglou I,Güç E.Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models.Nat Cell Biol2019;21:190-202. PMCID:PMC6525097

[69]

Wills CA,Chen L.Chemotherapy-induced upregulation of small extracellular vesicle-associated PTX3 accelerates breast cancer metastasis.Cancer Res2021;81:452-63 PMCID:PMC7855036

[70]

Voloshin T,Kaneti L.Blocking IL1β pathway following paclitaxel chemotherapy slightly inhibits primary tumor growth but promotes spontaneous metastasis.Mol Cancer Ther2015;14:1385-94

[71]

Liu G,Qi F.Specific chemotherapeutic agents induce metastatic behaviour through stromal- and tumour-derived cytokine and angiogenic factor signalling.J Pathol2015;237:190-202

[72]

Zhang Z,Hu Y,Lee RJ.Application of lipid-based nanoparticles in cancer immunotherapy.Front Immunol2022;13:967505 PMCID:PMC9393708

[73]

Liu X,Yu T.CL4-modified exosomes deliver lncRNA DARS-AS1 siRNA to suppress triple-negative breast cancer progression and attenuate doxorubicin resistance by inhibiting autophagy.Int J Biol Macromol2023;250:126147.

[74]

Zhou W,Chen X.Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment.Biomaterials2021;268:120546

[75]

Jaffray DA,Baumann M.Harnessing progress in radiotherapy for global cancer control.Nat Cancer2023;4:1228-38

[76]

Wan FZ,Sun YC.Exosomes overexpressing miR-34c inhibit malignant behavior and reverse the radioresistance of nasopharyngeal carcinoma.J Transl Med2020;18:12 PMCID:PMC6947927

[77]

Jiang J,Gong J.Radiosensitizer EXO-miR-197-3p inhibits nasopharyngeal carcinoma progression and radioresistance by regulating the AKT/mTOR axis and HSPA5-mediated autophagy.Int J Biol Sci2022;18:1878-95 PMCID:PMC8935226

[78]

Kamerkar S,Sugimoto H.Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.Nature2017;546:498-503 PMCID:PMC5538883

[79]

Goodnow CC.Multistep pathogenesis of autoimmune disease.Cell2007;130:25-35.

[80]

Fugger L,Rossjohn J.Challenges, progress, and prospects of developing therapies to treat autoimmune diseases.Cell2020;181:63-80

[81]

Foulis AK,Farquharson MA.Insulitis in type 1 (insulin-dependent) diabetes mellitus in man--macrophages, lymphocytes, and interferon-gamma containing cells.J Pathol1991;165:97-103

[82]

Katsarou A,Rawshani A.Type 1 diabetes mellitus.Nat Rev Dis Primers2017;3:17016

[83]

Zhang X,Wang J.Engineered PD-L1-expressing platelets reverse new-onset type 1 diabetes.Adv Mater2020;32:1907692

[84]

Becker MW,Myint T.Immune engineered extracellular vesicles to modulate T cell activation in the context of type 1 diabetes.Sci Adv2023;9:eadg1082. PMCID:PMC10765990

[85]

Ying W,Bandyopadhyay G.Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity.Cell2017;171:372-84.e12

[86]

Deng ZB,Hardy RW.Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance.Diabetes2009;58:2498-505. PMCID:PMC2768161

[87]

Ying W,Dos Reis FCG.MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice.Cell Metab2021;33:781-790.e5 PMCID:PMC8035248

[88]

Ferrante SC,Pillai DK.Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease.Pediatr Res2015;77:447-54. PMCID:PMC4346410

[89]

Li C,Xu H.Roles and mechanisms of exosomal non-coding RNAs in human health and diseases.Signal Transduct Target Ther2021;6:383 PMCID:PMC8578673

[90]

Kil LP,van Nimwegen M.Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice.Blood2012;119:3744-56

[91]

Jin X,Pu C.Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus.Cell Mol Immunol2021;18:1896-903. PMCID:PMC8322088

[92]

Lee OJ,Korevaar SS.The importance of dosing, timing, and (in)activation of adipose tissue-derived mesenchymal stromal cells on their immunomodulatory effects.Stem Cells Dev2020;29:38-48

[93]

Liu YJ,Lin S.Current progress in treating systemic lupus erythematosus using exosomes/MicroRNAs.Cell Transplant2023;32:9636897221148775 PMCID:PMC9903023

[94]

Fang T,Li M.Engineered cell membrane vesicles expressing CD40 alleviate system lupus nephritis by intervening B cell activation.Small Methods2023;7:e2200925

[95]

Xu F,Dai H.Mesenchymal stem cell-derived extracellular vesicles with high PD-L1 expression for autoimmune diseases treatment.Adv Mater2022;34:2106265.

[96]

DeFronzo RA,Groop L.Type 2 diabetes mellitus.Nat Rev Dis Primers2015;1:15039

[97]

Dong J,Tian W.How to maximize the therapeutic effect of exosomes on skin wounds in diabetes mellitus: Review and discussion.Front Endocrinol2023;14:1146991 PMCID:PMC10083381

[98]

Zhang P,Jing Y,Zhu D.Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis.Ann Med2017;49:106-16.

[99]

Chen Q,Liu Y,Huang L.Exosome-based drug delivery systems for the treatment of diabetes and its complications: current opinion.Extracell Vesicles Circ Nucleic Acids2023;4:502-17

[100]

Falanga V,Soulika AM.Chronic wounds.Nat Rev Dis Primers2022;8:50 PMCID:PMC10352385

[101]

Gondaliya P,Bhat P.Mesenchymal stem cell-derived exosomes loaded with miR-155 inhibitor ameliorate diabetic wound healing.Mol Pharm2022;19:1294-308

[102]

Born LJ,Shoureshi P.HOTAIR-loaded mesenchymal stem/stromal cell extracellular vesicles enhance angiogenesis and wound healing.Adv Healthc Mater2022;11:e2002070 PMCID:PMC8522167

[103]

Chu Z,Ma K.Novel neutrophil extracellular trap-related mechanisms in diabetic wounds inspire a promising treatment strategy with hypoxia-challenged small extracellular vesicles.Bioact Mater2023;27:257-70 PMCID:PMC10133407

[104]

Zhang D,Li Z.MiR-144-5p, an exosomal miRNA from bone marrow-derived macrophage in type 2 diabetes, impairs bone fracture healing via targeting Smad1.J Nanobiotechnology2021;19:226 PMCID:PMC8327443

[105]

Wang N,Tang Z.Increased BMSC exosomal miR-140-3p alleviates bone degradation and promotes bone restoration by targeting Plxnb1 in diabetic rats.J Nanobiotechnology2022;20:97 PMCID:PMC8889728

[106]

Qiu P,Chen K.Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis.Biomaterials2020;227:119552

[107]

Lin Z,Meng W.Exosomal PD-L1 induces osteogenic differentiation and promotes fracture healing by acting as an immunosuppressant.Bioact Mater2022;13:300-11 PMCID:PMC8844834

[108]

Roth GA,Abajobir A.Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015.J Am Coll Cardiol2017;70:1-25.

[109]

Vagnozzi RJ,Sargent MA.An acute immune response underlies the benefit of cardiac stem cell therapy.Nature2020;577:405-9 PMCID:PMC6962570

[110]

Bolli R.Stem cells: cell therapy for cardiac repair: what is needed to move forward?.Nat Rev Cardiol2017;14:257-8

[111]

Sahoo S,Mathiyalagan P,Kafert-Kasting S.Therapeutic and diagnostic translation of extracellular vesicles in cardiovascular diseases: roadmap to the clinic.Circulation2021;143:1426-49 PMCID:PMC8021236

[112]

Du Y,Wang L,Lip GYH.Extracellular vesicles in cardiovascular diseases: From pathophysiology to diagnosis and therapy.Cytokine Growth Factor Rev2023;74:40-55

[113]

Ma J,Chen H.Advances in lncRNAs from stem cell-derived exosome for the treatment of cardiovascular diseases.Front Pharmacol2022;13:986683. PMCID:PMC9486024

[114]

Lai J,Guo Y.Engineered extracellular vesicles and their mimics in cardiovascular diseases.J Control Release2022;347:27-43.

[115]

Chen Y,Chen W.MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction.Stem Cell Res Ther2017;8:268 PMCID:PMC5702098

[116]

Wei Z,Zhao J.miRNA-181a over-expression in mesenchymal stem cell-derived exosomes influenced inflammatory response after myocardial ischemia-reperfusion injury.Life Sci2019;232:116632

[117]

Wei Z,Zhao Y.Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment.Biomaterials2021;275:121000.

[118]

Puhka M,Nordberg ME.Metabolomic Profiling of Extracellular Vesicles and Alternative Normalization Methods Reveal Enriched Metabolites and Strategies to Study Prostate Cancer-Related Changes.Theranostics2017;7:3824-41. PMCID:PMC5667407

[119]

Zhang M,Liu L.Engineered exosomes from different sources for cancer-targeted therapy.Signal Transduct Target Ther2023;8:124 PMCID:PMC10017761

[120]

Liu G,Chen G.The potential therapeutic value and application prospect of engineered exosomes in human diseases.Front Cell Dev Biol2022;10:1051380 PMCID:PMC9751586

[121]

Ovchinnikova LA,Ziganshin RH.Reprogramming extracellular vesicles for protein therapeutics delivery.Pharmaceutics2021;13:768 PMCID:PMC8224366

[122]

A Study of exoASO-STAT6 (CDK-004) in patients with advanced hepatocellular carcinoma (HCC) and patients with liver metastases from either primary gastric cancer or colorectal cancer (CRC). Available from: https://clinicaltrials.gov/study/NCT05375604#study-overview [Last accessed on 24 Jan 2024]

[123]

A phase 1/2a study of CDK-003 in patients with cutaneous T-cell lymphoma (CTCL). (Part B). Available from: https://clinicaltrials.gov/study/NCT05156229?term=NCT05156229&rank=1 [Last accessed on 24 Jan 2024]

AI Summary AI Mindmap
PDF

194

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/