Emerging evidence for dysregulated proteome cargoes of tau-propagating extracellular vesicles driven by familial mutations of tau and presenilin

Vivian Hook , Sonia Podvin , Charles Mosier , Ben Boyarko , Laura Seyffert , Haley Stringer , Robert A. Rissman

Extracellular Vesicles and Circulating Nucleic Acids ›› 2023, Vol. 4 ›› Issue (4) : 588 -98.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2023, Vol. 4 ›› Issue (4) :588 -98. DOI: 10.20517/evcna.2023.44
Review

Emerging evidence for dysregulated proteome cargoes of tau-propagating extracellular vesicles driven by familial mutations of tau and presenilin

Author information +
History +
PDF

Abstract

Tau propagation, pathogenesis, and neurotoxicity are hallmarks of neurodegenerative diseases that result in cognitive impairment. Tau accumulates in Alzheimer’s disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), chronic traumatic encephalopathy (CTE), progressive supranuclear palsy, and related tauopathies. Knowledge of the mechanisms for tau propagation in neurodegeneration is necessary for understanding the development of dementia. Exosomes, known as extracellular vesicles (EVs), have emerged as participants in promoting tau propagation. Recent findings show that EVs generated by neurons expressing familial mutations of tauopathies of FTDP-17 (P301L and V337M) (mTau) and presenilin (A246E) (mPS1) in AD induce tau propagation and accumulation after injection into rodent brain. To gain knowledge of the proteome cargoes of the mTau and mPS1 EVs that promote tau pathogenesis, this review compares the proteomes of these EVs, which results in important new questions concerning EV mechanisms of tau pathogenesis. Proteomics data show that EVs produced by mTau- and mPS1-expressing iPSC neurons share proteins involved in exocytosis and vesicle secretion and, notably, these EVs also possess differences in protein components of vesicle-mediated transport, extracellular functions, and cell adhesion. It will be important for future studies to gain an understanding of the breadth of familial genetic mutations of tau, presenilin, and other genes in promoting EV initiation of tau propagation and pathogenesis. Furthermore, elucidation of EV cargo components that mediate tau propagation will have potential as biomarkers and therapeutic strategies to ameliorate dementia of tauopathies.

Keywords

Tauopathies / mutant tau / mutant presenilin / exosome / extracellular vesicle / proteomics / Alzheimer’ s disease / frontotemporal dementia

Cite this article

Download citation ▾
Vivian Hook, Sonia Podvin, Charles Mosier, Ben Boyarko, Laura Seyffert, Haley Stringer, Robert A. Rissman. Emerging evidence for dysregulated proteome cargoes of tau-propagating extracellular vesicles driven by familial mutations of tau and presenilin. Extracellular Vesicles and Circulating Nucleic Acids, 2023, 4(4): 588-98 DOI:10.20517/evcna.2023.44

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goedert M,Crowther RA.Propagation of tau aggregates and neurodegeneration.Annu Rev Neurosci2017;40:189-210

[2]

Wang Y.Tau in physiology and pathology.Nat Rev Neurosci2016;17:5-21

[3]

Ballatore C,Trojanowski JQ.Tau-mediated neurodegeneration in Alzheimer's disease and related disorders.Nat Rev Neurosci2007;8:663-72.

[4]

McKee AC,Nowinski CJ.Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury.J Neuropathol Exp Neurol2009;68:709-35 PMCID:PMC2945234

[5]

Wang JZ,Grundke-Iqbal I.Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration.J Alzheimers Dis2013;33 Suppl 1:S123-39

[6]

Kimura T,Ishiguro K.Phospho-tau bar code: analysis of phosphoisotypes of tau and its application to tauopathy.Front Neurosci2018;12:44. PMCID:PMC5808175

[7]

Rajmohan R.Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer's disease neurons.J Alzheimers Dis2017;57:975-99 PMCID:PMC5793225

[8]

Alafuzoff I,Friden H,Winblad B.Histopathological criteria for progressive dementia disorders: clinical-pathological correlation and classification by multivariate data analysis.Acta Neuropathol1987;74:209-25

[9]

Arriagada PV,Hedley-Whyte ET.Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease.Neurology1992;42:631-9

[10]

Mielke MM,Wennberg AMV.Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the mayo clinic study on aging.JAMA Neurol2017;74:1073-80 PMCID:PMC5710182

[11]

M,Piacentini R.Extracellular tau oligomers produce an immediate impairment of LTP and memory.Sci Rep2016;6:19393

[12]

Witwer KW.Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature.J Extracell Vesicles2019;8:1648167 PMCID:PMC6711079

[13]

Winston CN,Akers JC.Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile.Alzheimers Dement2016;3:63-72

[14]

Goetzl EJ.Advancing medicine for Alzheimer's disease: a plasma neural exosome platform.FASEB J2020;34:13079-84

[15]

Leroux E,Caillierez R.Extracellular vesicles: major actors of heterogeneity in tau spreading among human tauopathies.Mol Ther2022;30:782-97. PMCID:PMC8821971

[16]

Ruan Z,Venkatesan Kalavai S.Alzheimer's disease brain-derived extracellular vesicles spread tau pathology in interneurons.Brain2021;144:288-309. PMCID:PMC7880668

[17]

Pérez M,Hernández F.Propagation of tau via extracellular vesicles.Front Neurosci2019;13:698 PMCID:PMC6614378

[18]

Liu WL,Lin MR.Emerging blood exosome-based biomarkers for preclinical and clinical Alzheimer's disease: a meta-analysis and systematic review.Neural Regen Res2022;17:2381-90 PMCID:PMC9120706

[19]

Malm T,Kanninen KM.Exosomes in Alzheimer's disease.Neurochem Int2016;97:193-9

[20]

Jia L,Zhang H.Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid.Alzheimers Dement2019;15:1071-80

[21]

Gabrielli M,Verderio C.Emerging roles of extracellular vesicles in Alzheimer's disease: focus on synaptic dysfunction and vesicle-neuron interaction.Cells2022;12:63 PMCID:PMC9818402

[22]

Miyoshi E,Melnik M.Exosomal tau with seeding activity is released from Alzheimer's disease synapses, and seeding potential is associated with amyloid beta.Lab Invest2021;101:1605-17 PMCID:PMC8590975

[23]

Wang Y,Kaniyappan S.The release and trans-synaptic transmission of Tau via exosomes.Mol Neurodegener2017;12:5 PMCID:PMC5237256

[24]

Podvin S,Liu Q.Dysregulation of exosome cargo by mutant tau expressed in human-induced pluripotent stem cell (iPSC) neurons revealed by proteomics analyses.Mol Cell Proteomics2020;19:1017-34 PMCID:PMC7261814

[25]

Podvin S,Liu Q.Mutant presenilin 1 dysregulates exosomal proteome cargo produced by human-induced pluripotent stem cell neurons.ACS Omega2021;6:13033-56

[26]

Lewis J,Rockwood J.Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein.Nat Genet2000;25:402-5

[27]

Spina S,Boeve BF.Frontotemporal dementia with the V337M MAPT mutation: tau-PET and pathology correlations.Neurology2017;88:758-66. PMCID:PMC5344079

[28]

Sherrington R,Liang Y.Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease.Nature1995;375:754-60.

[29]

Reilly P,Baron KR.Novel human neuronal tau model exhibiting neurofibrillary tangles and transcellular propagation.Neurobiol Dis2017;106:222-34. PMCID:PMC5593133

[30]

Winston CN,Rockenstein EM.Neuronal exosome-derived human tau is toxic to recipient mouse neurons in vivo.J Alzheimers Dis2019;67:541-53. PMCID:PMC8373009

[31]

Aulston B,Mante M,Rissman RA.Extracellular vesicles isolated from familial alzheimer's disease neuronal cultures induce aberrant tau phosphorylation in the wild-type mouse brain.J Alzheimers Dis2019;72:575-85. PMCID:PMC8373022

[32]

Tanimukai H,Iqbal K.Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer's disease.Am J Pathol2005;166:1761-71. PMCID:PMC1602412

[33]

Chai GS,Wang ZH.Downregulating ANP32A rescues synapse and memory loss via chromatin remodeling in Alzheimer model.Mol Neurodegener2017;12:34 PMCID:PMC5418850

[34]

Yu UY,Ahn JH.Regulatory B subunits of protein phosphatase 2A are involved in site-specific regulation of tau protein phosphorylation.Korean J Physiol Pharmacol2014;18:155-61 PMCID:PMC3994303

[35]

Lee G,Sharma VM.Phosphorylation of tau by fyn: implications for Alzheimer's disease.J Neurosci2004;24:2304-12 PMCID:PMC6730442

[36]

Boyarko B.Human tau isoforms and proteolysis for production of toxic tau fragments in neurodegeneration.Front Neurosci2021;15:702788 PMCID:PMC8566764

[37]

Quinn JP,Kellett KAB.Tau proteolysis in the pathogenesis of tauopathies: neurotoxic fragments and novel biomarkers.J Alzheimers Dis2018;63:13-33 PMCID:PMC5900574

[38]

Barbier P,Martinho M.Role of tau as a microtubule-associated protein: structural and functional aspects.Front Aging Neurosci2019;11:204. PMCID:PMC6692637

[39]

Kelleher RJ 3rd.Presenilin-1 mutations and Alzheimer's disease.Proc Natl Acad Sci U S A2017;114:629-31 PMCID:PMC5278466

[40]

Bagaria J,An SSA.Genetics, functions, and clinical impact of presenilin-1 (PSEN1) gene.Int J Mol Sci2022;23:10970 PMCID:PMC9504248

[41]

Larner AJ.Presenilin-1 mutations in Alzheimer's disease: an update on genotype-phenotype relationships.J Alzheimers Dis2013;37:653-9

[42]

Polanco JC,Briner A,Götz J.Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol.Acta Neuropathol2021;141:235-56 PMCID:PMC7847444

[43]

Polanco JC.Exosomal and vesicle-free tau seeds-propagation and convergence in endolysosomal permeabilization.FEBS J2022;289:6891-907.

[44]

Jiang S,Binder J.Proteopathic tau primes and activates interleukin-1β via myeloid-cell-specific MyD88- and NLRP3-ASC-inflammasome pathway.Cell Rep2021;36:109720 PMCID:PMC8491766

[45]

Mustapic M,Werner JK Jr.Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes.Front Neurosci2017;11:278 PMCID:PMC5439289

[46]

Lee EE,Barlow JW,Jeste DV.Plasma levels of neuron- and astrocyte-derived exosomal amyloid beta1-42, amyloid beta1-40, and phosphorylated tau levels in schizophrenia patients and non-psychiatric comparison subjects: relationships with cognitive functioning and psychopathology.Front Psychiatry2020;11:532624 PMCID:PMC7982803

[47]

Delgado-Peraza F,Volpert O.Neuronal and astrocytic extracellular vesicle biomarkers in blood reflect brain pathology in mouse models of alzheimer's disease.Cells2021;10:993 PMCID:PMC8146429

[48]

Goetzl EJ,Kapogiannis D.Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease.FASEB J2016;30:3853-9 PMCID:PMC5067254

[49]

Trotta T,Cianciulli A,Di Benedetto A.Microglia-derived extracellular vesicles in Alzheimer's disease: a double-edged sword.Biochem Pharmacol2018;148:184-92

[50]

Edbauer D,Regula JT,Steiner H.Reconstitution of gamma-secretase activity.Nat Cell Biol2003;5:486-8

[51]

Thinakaran G,Lee MK.Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo.Neuron1996;17:181-90.

[52]

Wolfe MS,Ostaszewski BL,Kimberly WT.Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity.Nature1999;398:513-7

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/