Trafficking of hormones and trophic factors to secretory and extracellular vesicles: a historical perspective and new hypothesis

Y. Peng Loh , Lan Xiao , Joshua J. Park

Extracellular Vesicles and Circulating Nucleic Acids ›› 2023, Vol. 4 ›› Issue (4) : 568 -87.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2023, Vol. 4 ›› Issue (4) :568 -87. DOI: 10.20517/evcna.2023.34
Review

Trafficking of hormones and trophic factors to secretory and extracellular vesicles: a historical perspective and new hypothesis

Author information +
History +
PDF

Abstract

It is well known that peptide hormones and neurotrophic factors are intercellular messengers that are packaged into secretory vesicles in endocrine cells and neurons and released by exocytosis upon the stimulation of the cells in a calcium-dependent manner. These secreted molecules bind to membrane receptors, which then activate signal transduction pathways to mediate various endocrine/trophic functions. Recently, there is evidence that these molecules are also in extracellular vesicles, including small extracellular vesicles (sEVs), which appear to be taken up by recipient cells. This finding raised the hypothesis that they may have functions differentiated from their classical secretory hormone/neurotrophic factor actions. In this article, the historical perspective and updated mechanisms for the sorting and packaging of hormones and neurotrophic factors into secretory vesicles and their transport in these organelles for release at the plasma membrane are reviewed. In contrast, little is known about the packaging of hormones and neurotrophic factors into extracellular vesicles. One proposal is that these molecules could be sorted at the trans-Golgi network, which then buds to form Golgi-derived vesicles that can fuse to endosomes and subsequently form intraluminal vesicles. They are then taken up by multivesicular bodies to form extracellular vesicles, which are subsequently released. Other possible mechanisms for packaging RSP proteins into sEVs are discussed. We highlight some studies in the literature that suggest the dual vesicular pathways for the release of hormones and neurotrophic factors from the cell may have some physiological significance in intercellular communication.

Keywords

Hormone trafficking / trophic factor / neurons / endocrine cells / extracellular vesicles / sEV / exosomes

Cite this article

Download citation ▾
Y. Peng Loh, Lan Xiao, Joshua J. Park. Trafficking of hormones and trophic factors to secretory and extracellular vesicles: a historical perspective and new hypothesis. Extracellular Vesicles and Circulating Nucleic Acids, 2023, 4(4): 568-87 DOI:10.20517/evcna.2023.34

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jena BP.Cell secretion and membrane fusion.Domest Anim Endocrinol2005;29:145-65.

[2]

Hicke L.Molecular machinery required for protein transport from the endoplasmic reticulum to the Golgi complex.Bioessays1990;12:253-8.

[3]

Andreeva AV,Saint-jore CM,Evans DE.Organization of transport from endoplasmic reticulum to Golgi in higher plants.Biochem Soc T2000;28:505-12.

[4]

Kim T,Arnaoutova I.Dense-core secretory granule biogenesis.Physiology2006;21:124-33

[5]

Stalder D.Direct trafficking pathways from the Golgi apparatus to the plasma membrane.Semin Cell Dev Biol2020;107:112-25 PMCID:PMC7152905

[6]

Kulp A.Biological functions and biogenesis of secreted bacterial outer membrane vesicles.Annu Rev Microbiol2010;64:163-84 PMCID:PMC3525469

[7]

Bonifacino JS.Vesicular transport earns a Nobel.Trends Cell Biol2014;24:3-5. PMCID:PMC4788104

[8]

Liu M,Xu X.Normal and defective pathways in biogenesis and maintenance of the insulin storage pool.J Clin Invest2021;131:142240 PMCID:PMC7810482

[9]

Wen G,Wu X,Zhang X.Proteomic characterization of secretory granules in dopaminergic neurons indicates chromogranin/secretogranin-mediated protein processing impairment in Parkinson's disease.Aging2021;13:20335-58. PMCID:PMC8436928

[10]

Chen H,Klein J.Loss of MAGEL2 in Prader-Willi syndrome leads to decreased secretory granule and neuropeptide production.JCI Insight2020;5:138576. PMCID:PMC7526459

[11]

Chung KN,Aponte GW.Molecular sorting in the secretory pathway.Science1989;243:192-7

[12]

Trueta C.An analytical method to measure the contribution of clear synaptic and dense-core peri-synaptic vesicles to neurotransmitter release from synaptic terminals with two classes of secretory vesicles.MethodsX2021;8:101374 PMCID:PMC8374493

[13]

Edwards RH.Neurotransmitter release: variations on a theme.Curr Biol1998;8:R883-5

[14]

Gondré-lewis MC,Loh YP.Cellular mechanisms for the biogenesis and transport of synaptic and dense-core vesicles.Int Rev Cell Mol Biol2012:299:27-115.

[15]

Bartolomucci A,Mahata SK,Loh YP.The extended granin family: structure, function, and biomedical implications.Endocr Rev2011;32:755-97 PMCID:PMC3591675

[16]

Koshimizu H,Cawley NX.Chromogranin A: a new proposal for trafficking, processing and induction of granule biogenesis.Regul Pept2010;160:153-9. PMCID:PMC2825573

[17]

Loh YP,Zhang C,Cawley N.Mechanism of sorting proopiomelanocortin and proenkephalin to the regulated secretory pathway of neuroendocrine cells.Ann N Y Acad Sci2002;971:416-25

[18]

Campelo F,von Blume J.Rediscovering the intricacies of secretory granule biogenesis.Curr Opin Cell Biol2023;85:102231

[19]

Arvan P.Sorting and storage during secretory granule biogenesis: looking backward and looking forward.Biochem J1998;332:593-610 PMCID:PMC1219518

[20]

Tooze SA.Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells.Biochim Biophys Acta1998;1404:231-44. PMCID:PMC7126647

[21]

De Bree FM, Van Der Kleij AA, Nijenhuis M, Zalm R, Murphy D, Burbach JP. The hormone domain of the vasopressin prohormone is required for the correct prohormone trafficking through the secretory pathway.J Neuroendocrinol2003;15:1156-63.

[22]

Chanat E,Huttner WB.Reduction of the disulfide bond of chromogranin B (secretogranin I) in the trans-Golgi network causes its missorting to the constitutive secretory pathways.EMBO J1993;12:2159-68 PMCID:PMC413437

[23]

Glombik MM,Salm T,Gerdes HH.The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules.EMBO J1999;18:1059-70 PMCID:PMC1171197

[24]

Guizzetti L,Dhanvantari S.Two dipolar α-helices within hormone-encoding regions of proglucagon are sorting signals to the regulated secretory pathway.J Biol Chem2014;289:14968-80 PMCID:PMC4031548

[25]

Blanco EH,Andrés ME.An amphipathic alpha-helix in the prodomain of cocaine and amphetamine regulated transcript peptide precursor serves as its sorting signal to the regulated secretory pathway.PLoS One2013;8:e59695. PMCID:PMC3602189

[26]

Sun ZP,Huang SH,Cheng L.Intracellular trafficking and secretion of cerebral dopamine neurotrophic factor in neurosecretory cells.J Neurochem2011;117:121-32

[27]

Cawley NX,Loh YP.60 YEARS OF POMC: biosynthesis, trafficking, and secretion of pro-opiomelanocortin-derived peptides.J Mol Endocrinol2016;56:T77-97. PMCID:PMC4899099

[28]

Loh YP,Rodriguez YM.Secretory granule biogenesis and neuropeptide sorting to the regulated secretory pathway in neuroendocrine cells.J Mol Neurosci2004;22:63-71

[29]

Dhanvantari S,Adams T.Disruption of a receptor-mediated mechanism for intracellular sorting of proinsulin in familial hyperproinsulinemia.Mol Endocrinol2003;17:1856-67

[30]

Cawley NX,Young S,Birch N.Carboxypeptidase E and secretogranin III coordinately facilitate efficient sorting of proopiomelanocortin to the regulated secretory pathway in AtT20 cells.Mol Endocrinol2016;30:37-47. PMCID:PMC4695627

[31]

Zhang CF,Lou H.Sorting of carboxypeptidase E to the regulated secretory pathway requires interaction of its transmembrane domain with lipid rafts.Biochem J2003;369:453-60 PMCID:PMC1223124

[32]

Lou H,Zaitsev E,Lu B.Sorting and activity-dependent secretion of BDNF require interaction of a specific motif with the sorting receptor carboxypeptidase e.Neuron2005;45:245-55

[33]

Arnaoutova I,Al-Awar OS,Loh YP.Recycling of raft-associated prohormone sorting receptor carboxypeptidase E requires interaction with ARF6.Mol Biol Cell2003;14:4448-57 PMCID:PMC266764

[34]

Cool DR,Shen F.Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(fat) mice.Cell1997;88:73-83

[35]

Krantz DE,Oorschot V.A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense core vesicles.J Cell Biol2000;149:379-96. PMCID:PMC2175167

[36]

Orci L,Amherdt M.The trans-most cisternae of the Golgi complex: a compartment for sorting of secretory and plasma membrane proteins.Cell1987;51:1039-51

[37]

Courel M,Rodriguez-Flores JL.Pro-hormone secretogranin II regulates dense core secretory granule biogenesis in catecholaminergic cells.J Biol Chem2010;285:10030-43 PMCID:PMC2843166

[38]

Freedman SD.Regulated secretory proteins in the exocrine pancreas aggregate under conditions that mimic the trans-Golgi network.Biochem Biophys Res Commun1993;197:992-9

[39]

Hosaka M,Sakai Y,Takeuchi T.Interaction between secretogranin III and carboxypeptidase E facilitates prohormone sorting within secretory granules.J Cell Sci2005;118:4785-95

[40]

Kim T,Eiden LE.Chromogranin A, an "on/off" switch controlling dense-core secretory granule biogenesis.Cell2001;106:499-509.

[41]

Kim T,Sun Z,Loh YP.Chromogranin A deficiency in transgenic mice leads to aberrant chromaffin granule biogenesis.J Neurosci2005;25:6958-61. PMCID:PMC6724839

[42]

Lutherborrow MA,Simpson AM.Gene expression profiling of HUH7-ins: lack of a granulogenic function for chromogranin A.Islets2009;1:62-74.

[43]

Obermüller S,King A.Defective secretion of islet hormones in chromogranin-B deficient mice.PLoS One2010;5:e8936 PMCID:PMC2812483

[44]

Borgonovo B,Solimena M.Biogenesis of secretory granules.Curr Opin Cell Biol2006;18:365-70

[45]

Day R.Secretory granule biogenesis and chromogranin A: master gene, on/off switch or assembly factor?.Trends Endocrinol Metab2003;14:10-3.

[46]

Du W,Zhao W.HID-1 is required for homotypic fusion of immature secretory granules during maturation.Elife2016;5:e18134 PMCID:PMC5094852

[47]

Yu Y,Jiu Y.HID-1 is a novel player in the regulation of neuropeptide sorting.Biochem J2011;434:383-90

[48]

Mesa R,Hoover CM.HID-1, a new component of the peptidergic signaling pathway.Genetics2011;187:467-83 PMCID:PMC3030490

[49]

Hummer BH,Burns C.HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification.Mol Biol Cell2017;28:3870-80 PMCID:PMC5739301

[50]

Bonnemaison M,Lin Y,Mains R.AP-1A controls secretory granule biogenesis and trafficking of membrane secretory granule proteins.Traffic2014;15:1099-121 PMCID:PMC4167924

[51]

Emperador-Melero J,van Weering J.Vti1a/b regulate synaptic vesicle and dense core vesicle secretion via protein sorting at the Golgi.Nat Commun2018;9:3421 PMCID:PMC6109172

[52]

Walter AM,de Wit H.The SNARE protein vti1a functions in dense-core vesicle biogenesis.EMBO J2014;33:1681-97 PMCID:PMC4194101

[53]

Keimpema L, Kooistra R, Toonen RF, Verhage M. CAPS-1 requires its C2, PH, MHD1 and DCV domains for dense core vesicle exocytosis in mammalian CNS neurons.Sci Rep2017;7:10817 PMCID:PMC5589909

[54]

Farina M,He E.CAPS-1 promotes fusion competence of stationary dense-core vesicles in presynaptic terminals of mammalian neurons.Elife2015;4:e05438 PMCID:PMC4341531

[55]

Sadakata T,Sekine Y.Interaction of calcium-dependent activator protein for secretion 1 (CAPS1) with the class II ADP-ribosylation factor small GTPases is required for dense-core vesicle trafficking in the trans-Golgi network.J Biol Chem2010;285:38710-9 PMCID:PMC2992304

[56]

Sadakata T,Shinoda Y.CAPS1 deficiency perturbs dense-core vesicle trafficking and Golgi structure and reduces presynaptic release probability in the mouse brain.J Neurosci2013;33:17326-34 PMCID:PMC6618362

[57]

Harashima S,Wang Y,Seino Y.Sorting nexin 19 regulates the number of dense core vesicles in pancreatic β-cells.J Diabetes Investig2012;3:52-61 PMCID:PMC4014933

[58]

Buffa L,Pietropaolo M,Solimena M.ICA69 is a novel Rab2 effector regulating ER-Golgi trafficking in insulinoma cells.Eur J Cell Biol2008;87:197-209

[59]

Cao M,Kam C.PICK1 and ICA69 control insulin granule trafficking and their deficiencies lead to impaired glucose tolerance.PLoS Biol2013;11:e1001541. PMCID:PMC3635858

[60]

Edwards SL,Richmond JE,Eimer S.Impaired dense core vesicle maturation in Caenorhabditis elegans mutants lacking Rab2.J Cell Biol2009;186:881-95 PMCID:PMC2753164

[61]

Hannemann M,Hegermann J,Koenig S.TBC-8, a putative RAB-2 GAP, regulates dense core vesicle maturation in Caenorhabditis elegans.PLoS Genet2012;8:e1002722 PMCID:PMC3359978

[62]

Holst B,Jansen AM.PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and decreased glucose tolerance.PLoS Biol2013;11:e1001542 PMCID:PMC3635866

[63]

Trogden KP,Lee JS,Gu G.Regulation of glucose-dependent golgi-derived microtubules by cAMP/EPAC2 promotes secretory vesicle biogenesis in pancreatic β Cells.Curr Biol2019;29:2339-2350.e5 PMCID:PMC6698911

[64]

Tooze SA,Tooze J.Characterization of the immature secretory granule, an intermediate in granule biogenesis.J Cell Biol1991;115:1491-503. PMCID:PMC2289211

[65]

Mulcahy LR,Nillni EA.Disruption of disulfide bond formation alters the trafficking of prothyrotropin releasing hormone (proTRH)-derived peptides.Regul Pept2006;133:123-33

[66]

Kuliawat R,Ludwig T.Differential sorting of lysosomal enzymes out of the regulated secretory pathway in pancreatic beta-cells.J Cell Biol1997;137:595-608 PMCID:PMC2139876

[67]

Tooze SA.Cell-free protein sorting to the regulated and constitutive secretory pathways.Cell1990;60:837-47 PMCID:PMC7125605

[68]

Dittie AS,Tooze SA.The AP-1 adaptor complex binds to immature secretory granules from PC12 cells, and is regulated by ADP-ribosylation factor.J Cell Biol1996;132:523-36 PMCID:PMC2199873

[69]

Chanturiya A,Zimmerberg J.Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers.Proc Natl Acad Sci U S A1997;94:14423-8 PMCID:PMC25008

[70]

Dittié AS,Tooze SA.Differential distribution of mannose-6-phosphate receptors and furin in immature secretory granules.J Cell Sci1999;112:3955-66

[71]

Kakhlon O,Larijani B,Tooze SA.GGA function is required for maturation of neuroendocrine secretory granules.EMBO J2006;25:1590-602. PMCID:PMC1440831

[72]

Crummy E,Thellman JC.The priming factor CAPS1 regulates dense-core vesicle acidification by interacting with rabconnectin3β/WDR7 in neuroendocrine cells.J Biol Chem2019;294:9402-15 PMCID:PMC6579465

[73]

Ma CJ,Kim T.An early endosome-derived retrograde trafficking pathway promotes secretory granule maturation.J Cell Biol2020;219:e201808017. PMCID:PMC7055004

[74]

Lim A,Saxton WM.Two kinesins drive anterograde neuropeptide transport.Mol Biol Cell2017;28:3542-53 PMCID:PMC5683764

[75]

Barkus RV,Horiuchi D,Saxton WM.Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides.Mol Biol Cell2008;19:274-83 PMCID:PMC2174192

[76]

Zahn TR,MacMorris MA.Dense core vesicle dynamics in Caenorhabditis elegans neurons and the role of kinesin UNC-104.Traffic2004;5:544-59.

[77]

Lo KY,Unger SM,Silverman MA.KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons.Neurosci Lett2011;491:168-73

[78]

Park JJ,Loh YP.Carboxypeptidase E cytoplasmic tail-driven vesicle transport is key for activity-dependent secretion of peptide hormones.Mol Endocrinol2008;22:989-1005 PMCID:PMC2276472

[79]

Park JJ,Loh YP.A bi-directional carboxypeptidase E-driven transport mechanism controls BDNF vesicle homeostasis in hippocampal neurons.Mol Cell Neurosci2008;39:63-73 PMCID:PMC2606928

[80]

Lund VK,Schack A,Gether U.Rab2 drives axonal transport of dense core vesicles and lysosomal organelles.Cell Rep2021;35:108973

[81]

Hummel JJA.Specific KIF1A-adaptor interactions control selective cargo recognition.J Cell Biol2021;220:e202105011 PMCID:PMC8298099

[82]

Park J,De Camilli P.End Binding protein 1 promotes specific motor-cargo association in the cell body prior to axonal delivery of dense core vesicles.bioRxiv2023;Epub ahead of print PMCID:PMC9882160

[83]

Bharat V,Burk K.Capture of dense core vesicles at synapses by JNK-dependent phosphorylation of synaptotagmin-4.Cell Rep2017;21:2118-33. PMCID:PMC5714612

[84]

Makani V,Sie KS.Annexin A1 complex mediates oxytocin vesicle transport.J Neuroendocrinol2013;25:1241-54 PMCID:PMC3975805

[85]

Goodwin PR,Juo P.Cyclin-dependent kinase 5 regulates the polarized trafficking of neuropeptide-containing dense-core vesicles in Caenorhabditis elegans motor neurons.J Neurosci2012;32:8158-72 PMCID:PMC3392131

[86]

Kwinter DM,Mafi P.Dynactin regulates bidirectional transport of dense-core vesicles in the axon and dendrites of cultured hippocampal neurons.Neuroscience2009;162:1001-10

[87]

Bittins CM,Hammer JA 3rd.Dominant-negative myosin Va impairs retrograde but not anterograde axonal transport of large dense core vesicles.Cell Mol Neurobiol2010;30:369-79 PMCID:PMC3878150

[88]

Tsuboi T,Leclerc I.5'-AMP-activated protein kinase controls insulin-containing secretory vesicle dynamics.J Biol Chem2003;278:52042-51

[89]

Li G,Just I,Aktories K.Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets.Mol Biol Cell1994;5:1199-213 PMCID:PMC301146

[90]

Thurmond DC,Furukawa M,Pessin JE.Glucose-stimulated insulin secretion is coupled to the interaction of actin with the t-SNARE (target membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein) complex.Mol Endocrinol2003;17:732-42

[91]

Ehre C,Abdullah LH.Barrier role of actin filaments in regulated mucin secretion from airway goblet cells.Am J Physiol Cell Physiol2005;288:C46-56

[92]

Bruun TZ,Gromada J.Scinderin-derived actin-binding peptides inhibit Ca2+- and GTPgammaS-dependent exocytosis in mouse pancreatic beta-cells.Eur J Pharmacol2000;403:221-4

[93]

Muallem S,Xu X.Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells.J Cell Biol1995;128:589-98. PMCID:PMC2199902

[94]

Tomas A,Min L,Halban PA.Regulation of pancreatic beta-cell insulin secretion by actin cytoskeleton remodelling: role of gelsolin and cooperation with the MAPK signalling pathway.J Cell Sci2006;119:2156-67

[95]

Pigeau GM,Ball BJ.Insulin granule recruitment and exocytosis is dependent on p110gamma in insulinoma and human beta-cells.Diabetes2009;58:2084-92 PMCID:PMC2731529

[96]

Oakley GG,Yao J.UV-induced hyperphosphorylation of replication protein a depends on DNA replication and expression of ATM protein.Mol Biol Cell2001;12:1199-213 PMCID:PMC34578

[97]

Gasman S,Malacombe M,Bader MF.Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments.Mol Biol Cell2004;15:520-31 PMCID:PMC329227

[98]

Rudolf R,Kuznetsov SA.Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells.J Cell Sci2003;116:1339-48.

[99]

Wu XS,Zhang H.Identification of an organelle receptor for myosin-Va.Nat Cell Biol2002;4:271-8

[100]

Rosé SD,Casaletti L,Pene TD.Myosins II and V in chromaffin cells: myosin V is a chromaffin vesicle molecular motor involved in secretion.J Neurochem2003;85:287-98

[101]

Yi Z,Torii S.The Rab27a/granuphilin complex regulates the exocytosis of insulin-containing dense-core granules.Mol Cell Biol2002;22:1858-67 PMCID:PMC135591

[102]

Desnos C,Fanget I.Myosin va mediates docking of secretory granules at the plasma membrane.J Neurosci2007;27:10636-45 PMCID:PMC6673143

[103]

Kasai K,Takahashi N.Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation.J Clin Invest2005;115:388-96

[104]

Waselle L,Fukuda M.Involvement of the Rab27 binding protein Slac2c/MyRIP in insulin exocytosis.Mol Biol Cell2003;14:4103-13 PMCID:PMC207003

[105]

Sato O,Ikebe M.Myosin Va becomes a low duty ratio motor in the inhibited form.J Biol Chem2007;282:13228-39

[106]

Johnstone RM,Hammond JR,Turbide C.Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes).J Biol Chem1987;262:9412-20

[107]

Karimi N,Dias T,Lässer C.Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma - Contributions of platelet extracellular vesicles in plasma samples.J Extracell Vesicles2022;11:e12213 PMCID:PMC9077141

[108]

Zhao Z,Godwin AK.Isolation and analysis methods of extracellular vesicles (EVs).Extracell Vesicles Circ Nucl Acids2021;2:80-103 PMCID:PMC8372011

[109]

Xiao L,Loh YP.Function of exosomes in neurological disorders and brain tumors.Extracell Vesicles Circ Nucl Acids2021;2:55-79 PMCID:PMC8341051

[110]

Hu W,Ru Z.Extracellular vesicles-released parathyroid hormone-related protein from Lewis lung carcinoma induces lipolysis and adipose tissue browning in cancer cachexia.Cell Death Dis2021;12:134 PMCID:PMC7843996

[111]

Gelle T,Plansont B.BDNF and pro-BDNF in serum and exosomes in major depression: evolution after antidepressant treatment.Prog Neuropsychopharmacol Biol Psychiatry2021;109:110229

[112]

Hareendran S,Yang X.Exosomal carboxypeptidase E (CPE) and CPE-shRNA-loaded exosomes regulate metastatic phenotype of tumor cells.Int J Mol Sci2022;23:3113 PMCID:PMC8953963

[113]

Podvin S,Liu Q.Mutant presenilin 1 dysregulates exosomal proteome cargo produced by human-induced pluripotent stem cell neurons.ACS Omega2021;6:13033-56

[114]

Podvin S,Liu Q.Dysregulation of exosome cargo by mutant Tau expressed in human-induced pluripotent stem cell (iPSC) neurons revealed by proteomics analyses.Mol Cell Proteomics2020;19:1017-34 PMCID:PMC7261814

[115]

Winston CN,Akers JC.Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile.Alzheimers Dement2016;3:63-72 PMCID:PMC4925777

[116]

Eitan E,Elgart K.Synaptic proteins in neuron-derived extracellular vesicles as biomarkers for Alzheimer's disease: novel methodology and clinical proof of concept.Extracell Vesicles Circ Nucl Acids2023;4:133-50

[117]

Murthy SRK,Al-Sweel N,Cawley NX.Carboxypeptidase E promotes cancer cell survival, but inhibits migration and invasion.Cancer Lett2013;341:204-13 PMCID:PMC3825807

[118]

Fricker LD.Carboxypeptidase E.Annu Rev Physiol1988;50:309-21.

[119]

Ji L,Qin XY.Dissecting carboxypeptidase E: properties, functions and pathophysiological roles in disease.Endocr Connect2017;6:R18-38. PMCID:PMC5434747

[120]

Hareendran S,Sharma VK.Carboxypeptidase E and its splice variants: key regulators of growth and metastasis in multiple cancer types.Cancer Lett2022;548:215882 PMCID:PMC9532369

[121]

Xiao L.Neurotrophic factor-α1/carboxypeptidase E Functions in neuroprotection and alleviates depression.Front Mol Neurosci2022;15:918852. PMCID:PMC9197069

[122]

Park JJ.How peptide hormone vesicles are transported to the secretion site for exocytosis.Mol Endocrinol2008;22:2583-95

[123]

Xiao L,Loh YP.Neurotrophic, gene regulation, and cognitive functions of carboxypeptidase E-neurotrophic factor-α1 and its variants.Front Neurosci2019;13:243. PMCID:PMC6433828

[124]

Sharma VK,Kim SK.Novel interaction between neurotrophic factor-α1/carboxypeptidase E and serotonin receptor, 5-HTR1E, protects human neurons against oxidative/neuroexcitotoxic stress via β-arrestin/ERK signaling.Cell Mol Life Sci2021;79:24 PMCID:PMC8732845

[125]

Colucci-D'Amato L,Volpicelli F.Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer.Int J Mol Sci2020;21:7777 PMCID:PMC7589016

[126]

Leal G,Duarte CB.BDNF-induced local protein synthesis and synaptic plasticity.Neuropharmacology2014;76 Pt C:639-56

[127]

Bowling H,Klann E.Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology.Neural Regen Res2016;11:363-7 PMCID:PMC4828984

[128]

Bathina S.Brain-derived neurotrophic factor and its clinical implications.Arch Med Sci2015;11:1164-78 PMCID:PMC4697050

[129]

Marell PS,Evans MD,Kling PJ.Cord blood-derived exosomal CNTN2 and BDNF: potential molecular markers for brain health of neonates at risk for iron deficiency.Nutrients2019;11:2478 PMCID:PMC6835945

[130]

Yusrawati, Rina G, Indrawati LN, Machmud R. Differences in brain-derived neurotrophic factor between neonates born to mothers with normal and low ferritin.Asia Pac J Clin Nutr2018;27:389-92

[131]

Koshimizu H,Hara T.Multiple functions of precursor BDNF to CNS neurons: negative regulation of neurite growth, spine formation and cell survival.Mol Brain2009;2:27 PMCID:PMC2743674

[132]

Philbrick WM,Galbraith S.Defining the roles of parathyroid hormone-related protein in normal physiology.Physiol Rev1996;76:127-73.

[133]

Walter P,Blobel G.Protein translocation across the endoplasmic reticulum.Cell1984;38:5-8

[134]

Wells A,Castellanos F.A Rab6 to Rab11 transition is required for dense-core granule and exosome biogenesis in Drosophila secondary cells.PLoS Genet2023;19:e1010979 PMCID:PMC10602379

[135]

Stenmark H.Rab GTPases as coordinators of vesicle traffic.Nat Rev Mol Cell Biol2009;10:513-25

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/