Bioprinting extracellular vesicles as a "cell-free" regenerative medicine approach

Kexin Jiao , Chun Liu , Saraswat Basu , Nimal Raveendran , Tamaki Nakano , Sašo Ivanovski , Pingping Han

Extracellular Vesicles and Circulating Nucleic Acids ›› 2023, Vol. 4 ›› Issue (2) : 218 -39.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2023, Vol. 4 ›› Issue (2) :218 -39. DOI: 10.20517/evcna.2023.19
Review

Bioprinting extracellular vesicles as a "cell-free" regenerative medicine approach

Author information +
History +
PDF

Abstract

Regenerative medicine involves the restoration of tissue or organ function via the regeneration of these structures. As promising regenerative medicine approaches, either extracellular vesicles (EVs) or bioprinting are emerging stars to regenerate various tissues and organs (i.e., bone and cardiac tissues). Emerging as highly attractive cell-free, off-the-shelf nanotherapeutic agents for tissue regeneration, EVs are bilayered lipid membrane particles that are secreted by all living cells and play a critical role as cell-to-cell communicators through an exchange of EV cargos of protein, genetic materials, and other biological components. 3D bioprinting, combining 3D printing and biology, is a state-of-the-art additive manufacturing technology that uses computer-aided processes to enable simultaneous patterning of 3D cells and tissue constructs in bioinks. Although developing an effective system for targeted EVs delivery remains challenging, 3D bioprinting may offer a promising means to improve EVs delivery efficiency with controlled loading and release. The potential application of 3D bioprinted EVs to regenerate tissues has attracted attention over the past few years. As such, it is timely to explore the potential and associated challenges of utilizing 3D bioprinted EVs as a novel "cell-free" alternative regenerative medicine approach. In this review, we describe the biogenesis and composition of EVs, and the challenge of isolating and characterizing small EVs - sEVs (< 200 nm). Common 3D bioprinting techniques are outlined and the issue of bioink printability is explored. After applying the following search strategy in PubMed: "bioprinted exosomes" or "3D bioprinted extracellular vesicles", eight studies utilizing bioprinted EVs were found that have been included in this scoping review. Current studies utilizing bioprinted sEVs for various in vitro and in vivo tissue regeneration applications, including angiogenesis, osteogenesis, immunomodulation, chondrogenesis and myogenesis, are discussed. Finally, we explore the current challenges and provide an outlook on possible refinements for bioprinted sEVs applications.

Keywords

3D bioprinting / small extracellular vesicles / bioprinted sEVs / regenerative medicine

Cite this article

Download citation ▾
Kexin Jiao, Chun Liu, Saraswat Basu, Nimal Raveendran, Tamaki Nakano, Sašo Ivanovski, Pingping Han. Bioprinting extracellular vesicles as a "cell-free" regenerative medicine approach. Extracellular Vesicles and Circulating Nucleic Acids, 2023, 4(2): 218-39 DOI:10.20517/evcna.2023.19

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schäfer N.New refinements aim to optimize articular cartilage tissue engineering.Nat Rev Rheumatol2023;19:66-7

[2]

Wang X,Tian W.Strategies of cell and cell-free therapies for periodontal regeneration: the state of the art.Stem Cell Res Ther2022;13:536 PMCID:PMC9795760

[3]

Safdar A,Tarnopolsky MA.The potential of endurance exercise-derived exosomes to treat metabolic diseases.Nat Rev Endocrinol2016;12:504-17

[4]

Théry C,Aikawa E.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.J Extracell Vesicles2018;7:1535750 PMCID:PMC6322352

[5]

Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles.Nat Rev Mol Cell Biol2018;19:213-28

[6]

Colombo M,Théry C.Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.Annu Rev Cell Dev Biol2014;30:255-89

[7]

Yáñez-Mó M,Andreu Z.Biological properties of extracellular vesicles and their physiological functions.J Extracell Vesicles2015;4:27066

[8]

Hua S,Gulati K,Ivanovski S.Periodontal and dental pulp cell-derived small extracellular vesicles: a review of the current status.Nanomaterials2021;11:1858 PMCID:PMC8308278

[9]

Sun Y,Zhai D.Three-dimensional printing of bioceramic-induced macrophage exosomes: immunomodulation and osteogenesis/angiogenesis.NPG Asia Mater2021;13

[10]

Murphy SV.3D bioprinting of tissues and organs.Nat Biotechnol2014;32:773-85

[11]

Kačarević ŽP,Alkildani S.An Introduction to 3D bioprinting: possibilities, challenges and future aspects.Materials2018;11:2199 PMCID:PMC6266989

[12]

Ji S.Recent Advances in bioink design for 3D bioprinting of tissues and organs.Front Bioeng Biotechnol2017;5:23 PMCID:PMC5380738

[13]

Arslan-Yildiz A,Chen P,Inci F.Towards artificial tissue models: past, present, and future of 3D bioprinting.Biofabrication2016;8:014103

[14]

Weng T,Xia Y.3D bioprinting for skin tissue engineering: Current status and perspectives.J Tissue Eng2021;12:20417314211028574 PMCID:PMC8283073

[15]

Agarwal S,Balla VK,Barui A.Current developments in 3D bioprinting for tissue and organ regeneration–a review.Front Mech Eng2020;6:589171

[16]

Bajaj P,Khademhosseini A,Bashir R.3D biofabrication strategies for tissue engineering and regenerative medicine.Annu Rev Biomed Eng2014;16:247-76 PMCID:PMC4131759

[17]

Xu T,Gregory C,Boland T.Inkjet printing of viable mammalian cells.Biomaterials2005;26:93-9

[18]

Zhang YS,Hübscher T.3D extrusion bioprinting.Nat Rev Methods Primers2021;1

[19]

Raveendran N, Vaquette C, Meinert C, Samuel Ipe D, Ivanovski S. Optimization of 3D bioprinting of periodontal ligament cells.Dent Mater2019;35:1683-94

[20]

Liu C,Lu W.Computer vision-aided bioprinting for bone research.Bone Res2022;10:21 PMCID:PMC8881598

[21]

Galarraga JH,Burdick JA.3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue.Sci Rep2019;9:19987 PMCID:PMC6934815

[22]

Schöneberg J,Theek B.Engineering biofunctional in vitro vessel models using a multilayer bioprinting technique.Sci Rep2018;8:10430 PMCID:PMC6041340

[23]

Lee UL,Cao HL.Bioprinting on 3D printed titanium scaffolds for periodontal ligament regeneration.Cells2021;10:1337 PMCID:PMC8229613

[24]

Han P.3D bioprinted extracellular vesicles for tissue engineering-a perspective.Biofabrication2022;15:013001

[25]

Lalic-Cosic S,Kovac M.Phosphatidylserine exposing extracellular vesicles in pre-eclamptic patients.Front Med2021;8:761453 PMCID:PMC8595119

[26]

Woith E,Melzig MF.Extracellular vesicles-connecting kingdoms.Int J Mol Sci2019;20:5695 PMCID:PMC6888613

[27]

Kowal J,Théry C.Biogenesis and secretion of exosomes.Curr Opin Cell Biol2014;29:116-25

[28]

Möller A.The evolving translational potential of small extracellular vesicles in cancer.Nat Rev Cancer2020;20:697-709

[29]

Liang Y,Zheng S.Emerging methods in biomarker identification for extracellular vesicle-based liquid biopsy.J Extracell Vesicles2021;10:e12090 PMCID:PMC8114032

[30]

Jiao K,Ivanovski S.The emerging regulatory role of circular RNAS in periodontal tissues and cells.Int J Mol Sci2021;22:4636 PMCID:PMC8124626

[31]

Edgar JR.Q&A: What are exosomes, exactly?.BMC Biol2016;14:46 PMCID:PMC4906597

[32]

Doyle LM.Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis.Cells2019;8:727 PMCID:PMC6678302

[33]

Cheng L.Therapeutically harnessing extracellular vesicles.Nat Rev Drug Discov2022;21:379-99

[34]

Sidhom K,Saleem A.A review of exosomal isolation methods: is size exclusion chromatography the best option?.Int J Mol Sci2020;21:6466 PMCID:PMC7556044

[35]

Carnino JM,Jin Y.Isolation and characterization of extracellular vesicles from Broncho-alveolar lavage fluid: a review and comparison of different methods.Respir Res2019;20:240 PMCID:PMC6822481

[36]

Esmaeili A,Baghaban Eslaminejad M.Engineering strategies for customizing extracellular vesicle uptake in a therapeutic context.Stem Cell Res Ther2022;13:129 PMCID:PMC8960087

[37]

Han P,Ivanovski S.The emerging role of small extracellular vesicles in saliva and gingival crevicular fluid as diagnostics for periodontitis.J Periodontal Res2022;57:219-31

[38]

Boriachek K,Möller A.Biological functions and current advances in isolation and detection strategies for exosome nanovesicles.Small2018;14:1702153

[39]

Han P.Effect of saliva collection methods on the detection of periodontium-related genetic and epigenetic biomarkers-a pilot study.Int J Mol Sci2019;20:4729 PMCID:PMC6801527

[40]

Han P,Salomon C.Salivary small extracellular vesicles associated miRNAS in periodontal status-a pilot study.Int J Mol Sci2020;21:2809 PMCID:PMC7215885

[41]

Han P,Salomon C.Detection of Salivary small extracellular vesicles associated inflammatory cytokines gene methylation in gingivitis.Int J Mol Sci2020;21:5273 PMCID:PMC7432462

[42]

Han P,Salomon C.Salivary outer membrane vesicles and DNA methylation of small extracellular vesicles as biomarkers for periodontal status: a pilot study.Int J Mol Sci2021;22:2423 PMCID:PMC7957785

[43]

Liaw A,Ivanovski S.The relevance of DNA methylation and histone modification in periodontitis: a scoping review.Cells2022;11:3211 PMCID:PMC9601099

[44]

Kalluri R.The biology, function, and biomedical applications of exosomes.Science2020;367 PMCID:PMC7717626

[45]

Debnath K,Rivera A.Extracellular vesicle-matrix interactions..Nat Rev Mater2023;8:390-402

[46]

Cheshmi B.Salivary exosomes: properties, medical applications, and isolation methods.Mol Biol Rep2020;47:6295-307

[47]

Han P,Wei W.Saliva diagnosis using small extracellular vesicles and salivaomics.Methods Mol Biol2023;2588:25-39

[48]

Galley JD.The Therapeutic Potential of breast milk-derived extracellular vesicles.Nutrients2020;12:745 PMCID:PMC7146576

[49]

Galley JD.The Therapeutic potential of breast milk-derived extracellular vesicles.Nutrients2020;12:745 PMCID:PMC7146576

[50]

Salomon C,Kobayashi M.A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration.PLoS One2014;9:e98667 PMCID:PMC4048215

[51]

Mathivanan S,Simpson RJ.Exosomes: extracellular organelles important in intercellular communication.J Proteomics2010;73:1907-20

[52]

Sharma S,Rice GE.Methods to enrich exosomes from conditioned media and biological fluids.Methods Mol Biol2018;1710:103-115

[53]

Han P,Sulugodu Ramachandra S,Ivanovski S.Antibody response to BNT162b2 mRNA vaccine in gingival crevicular fluid.J Periodontol2023;94:77-87 PMCID:PMC9350298

[54]

Puljich A,Lee RSB,Ivanovski S.Simulated and clinical aerosol spread in common periodontal aerosol-generating procedures.Clin Oral Investig2022;26:5751-62 PMCID:PMC9113070

[55]

Han P,Staples R.Salivary SARS-CoV-2 antibody detection using S1-RBD protein-immobilized 3D melt electrowritten poly(ε-caprolactone) scaffolds.RSC Adv2022;12:24849-56 PMCID:PMC9429024

[56]

He F,Fan R,Chen X.Extracellular vesicles: an emerging regenerative treatment for oral disease.Front Cell Dev Biol2021;9:669011 PMCID:PMC8165191

[57]

Wang R,Zhang Y.Emerging prospects of extracellular vesicles for brain disease theranostics.J Control Release2022;341:844-68

[58]

Bei Y,Rodosthenous RS.Extracellular vesicles in cardiovascular theranostics.Theranostics2017;7:4168-82 PMCID:PMC5695004

[59]

Herrmann IK,Fuhrmann G.Extracellular vesicles as a next-generation drug delivery platform.Nat Nanotechnol2021;16:748-59

[60]

Romano M,Paolini L,Berardi AC. 2 - Extracellular vesicles in regenerative medicine. In: editor^editors, editor. Nanomaterials for theranostics and tissue engineering. Elsevier; 2020.p.29-58.

[61]

Liu C,Gómez-Cerezo MN,Han P.Emerging technologies of three-dimensional printing and mobile health in COVID-19 immunity and regenerative dentistry.Tissue Eng Part C Methods2023;29:163-82

[62]

Gu BK,Park SJ,Kim C. 3D Bioprinting Technologies for Tissue Engineering Applications. In: Chun HJ, Park CH, Kwon IK, Khang G, editors. Cutting-edge enabling technologies for regenerative medicine. Singapore: Springer; 2018. pp. 15-28.

[63]

Knowlton S,Shah T.Bioprinting for neural tissue engineering.Trends Neurosci2018;41:31-46

[64]

Li J,Fan X.Recent advances in bioprinting techniques: approaches, applications and future prospects.J Transl Med2016;14:271 PMCID:PMC5028995

[65]

Varkey M,van Zuijlen PPM,Yoo JJ.Skin bioprinting: the future of burn wound reconstruction?.Burns Trauma2019;7:4 PMCID:PMC6371568

[66]

Vanaei S,Vanaei S,Vanaei H.An overview on materials and techniques in 3D bioprinting toward biomedical application.Engineered Regeneration2021;2:1-18

[67]

Suk JS,Kim N,Ensign LM.PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv Drug Deliv Rev2016;99:28-51 PMCID:PMC4798869

[68]

Abuchowski A,Palczuk NC,Davis FF.Effect of covalent attachment of polyethylene-glycol on immunogenicity and circulating life of bovine liver catalase.J Biol Chem1977;252:3582-6

[69]

Freeman FE,van Dommelen LHA.3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration.Sci Adv2020;6:eabb5093 PMCID:PMC7428335

[70]

Kim J,Kim YM.Thermo-responsive nanocomposite bioink with growth-factor holding and its application to bone regeneration.Small2023;19:e2203464

[71]

Boyd-moss M,Brandt M,Williams R. Bioprinting and Biofabrication with Peptide and Protein Biomaterials. In: Sunna A, Care A, Bergquist PL, editors. Peptides and peptide-based biomaterials and their biomedical applications. Cham: Springer International Publishing; 2017. pp. 95-129.

[72]

Schwab A,D'Este M,Eglin D.Printability and Shape fidelity of bioinks in 3D bioprinting.Chem Rev2020;120:11028-55 PMCID:PMC7564085

[73]

Decante G,Silva-Correia J,Reis RL.Engineering bioinks for 3D bioprinting.Biofabrication2021;13:032001

[74]

Groll J,Cho DW.A definition of bioinks and their distinction from biomaterial inks.Biofabrication2018;11:013001

[75]

Kumar S,Thomas S.3D bioprinting of nature-inspired hydrogel inks based on synthetic polymers.ACS Appl Polym Mater2021;3:3685-701

[76]

Singh M.Advances in bioprinting using additive manufacturing.Eur J Pharm Sci2020;143:105167

[77]

Matai I,Seyedsalehi A,Laurencin CT.Progress in 3D bioprinting technology for tissue/organ regenerative engineering.Biomaterials2020;226:119536

[78]

Agarwal T,Presutti D.Recent advances in bioprinting technologies for engineering different cartilage-based tissues.Mater Sci Eng C Mater Biol Appl2021;123:112005

[79]

Corbel S,Roques-Carmes T.Materials for stereolithography. In: editor^editors, editor. Stereolithography: materials, processes and applications. Boston, MA:Springer US;2011.p.141-59.

[80]

Thomas A,Lam T.Vascular bioprinting with enzymatically degradable bioinks via multi-material projection-based stereolithography.Acta Biomater2020;117:121-32

[81]

Hossain Rakin R,Rajeev A.Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting.Biofabrication2021;13:044109

[82]

Grigoryan B,Avila A.Development, characterization, and applications of multi-material stereolithography bioprinting.Sci Rep2021;11:3171 PMCID:PMC7862383

[83]

Singh M,Dhagat P.Inkjet printing-process and its applications.Adv Mater2010;22:673-85

[84]

Mota C. Chapter 11 - High throughput screening with biofabrication platforms. In: editor^editors, editor. Essentials of 3D Biofabrication and Translation. Boston:Academic Press;2015.p.187-213.

[85]

Saini G,Mayer JL,Albadawi H.Applications of 3D bioprinting in tissue engineering and regenerative medicine.J Clin Med2021;10:4966 PMCID:PMC8584432

[86]

Yang P,Hu Y,Fang B.Emerging 3D bioprinting applications in plastic surgery.Biomater Res2023;27:1 PMCID:PMC9808966

[87]

Yi HG,Kwon J,Jang J.Application of 3D bioprinting in the prevention and the therapy for human diseases.Signal Transduct Target Ther2021;6:177 PMCID:PMC8119699

[88]

Gao G,Hubbell K.Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA.Biotechnol Lett2015;37:2349-55

[89]

Szklanny AA,Redenski I.3D bioprinting of engineered tissue flaps with hierarchical vessel networks (vesselnet) for direct host-to-implant perfusion.Adv Mater2021;33:e2102661

[90]

Zhang YS,Bersini S.Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip.Biomaterials2016;110:45-59 PMCID:PMC5198581

[91]

Noor N,Edri R,Wertheim L.3D printing of personalized thick and perfusable cardiac patches and hearts.Adv Sci2019;6:1900344 PMCID:PMC6548966

[92]

Ojansivu M,Ahlinder A.Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells.Biofabrication2019;11:035010

[93]

Ostrovidov S,Costantini M.3D bioprinting in skeletal muscle tissue engineering.Small2019;15:e1805530

[94]

Wang Z,Li C.Tissue-specific engineering: 3D bioprinting in regenerative medicine.J Control Release2021;329:237-56

[95]

Wang Z,Li T.3D bioprinting in cardiac tissue engineering.Theranostics2021;11:7948-69 PMCID:PMC8315053

[96]

Chae S.Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering.Acta Biomater2023;156:4-20

[97]

Lozano R,Thompson BC.3D printing of layered brain-like structures using peptide modified gellan gum substrates.Biomaterials2015;67:264-73

[98]

Mondal A,Subramanian R,Singh M.Abstract 5018: Bioprinted (3D) co-cultured spheroids with NSCLC PDX cells and cancer associated fibroblasts (CAFs) using alginate/gelatin hydrogel.Cancer Research2018;78:5018-5018

[99]

Atapattu L,O'mahony A.Abstract 5022: precision medicine: high-throughput 3D bioprinting of embedded multicellular cancer spheroids.Cancer Research2018;78:5022-5022

[100]

Gaetani R,Verhage V.Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction.Biomaterials2015;61:339-48

[101]

Michael S,Peck CT.Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice.PLoS One2013;8:e57741 PMCID:PMC3587634

[102]

Theodoraki MN,Gooding WE.Circulating exosomes measure responses to therapy in head and neck cancer patients treated with cetuximab, ipilimumab, and IMRT.Oncoimmunology2019;8:1593805 PMCID:PMC6527269

[103]

Maiullari F,Costantini M.In vivo organized neovascularization induced by 3D bioprinted endothelial-derived extracellular vesicles.Biofabrication2021;13:035014

[104]

Born LJ,Dutta D.Sustained released of bioactive mesenchymal stromal cell-derived extracellular vesicles from 3D-printed gelatin methacrylate hydrogels.J Biomed Mater Res A2022;110:1190-8

[105]

Yerneni SS,Weiss LE.Cell trafficking and regulation of osteoblastogenesis by extracellular vesicle associated bone morphogenetic protein 2.J Extracell Vesicles2021;10:e12155 PMCID:PMC8528095

[106]

Yerneni SS,Weiss LE.Bioprinting exosome-like extracellular vesicle microenvironments.Bioprinting2019;13:e00041

[107]

Yerneni SS,Shrestha P.Rapid on-demand extracellular vesicle augmentation with versatile oligonucleotide tethers.ACS Nano2019;13:10555-65 PMCID:PMC6800810

[108]

Chen P,Wang Y.Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration.Theranostics2019;9:2439-59 PMCID:PMC6525998

[109]

Kang Y,Meng L.3D bioprinting of dECM/Gel/QCS/nHAp hybrid scaffolds laden with mesenchymal stem cell-derived exosomes to improve angiogenesis and osteogenesis.Biofabrication2023;15:024103

[110]

Bartold PM.P4 Medicine as a model for precision periodontal care.Clin Oral Investig2022;26:5517-33 PMCID:PMC9474478

[111]

Bartnikowski M,Ivanovski S.Workflow for highly porous resorbable custom 3D printed scaffolds using medical grade polymer for large volume alveolar bone regeneration.Clin Oral Implants Res2020;31:431-41

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/