Extracellular vesicles - on the cusp of a new language in the biological sciences
Graca Raposo , Philip D. Stahl
Extracellular Vesicles and Circulating Nucleic Acids ›› 2023, Vol. 4 ›› Issue (2) : 240 -54.
Extracellular vesicles - on the cusp of a new language in the biological sciences
Extracellular vesicles (EVs) play a key role both in physiological balance and homeostasis and in disease processes through their ability to participate in intercellular signaling and communication. An ever-expanding knowledge pool and a myriad of functional properties ascribed to EVs point to a new language of communication in biological systems that has opened a path for the discovery and implementation of novel diagnostic applications. EVs originate in the endosomal network and via non-random shedding from the plasma membrane by mechanisms that allow the packaging of functional cargoes, including proteins, lipids, and genetic materials. Deciphering the molecular mechanisms that govern packaging, secretion and targeted delivery of extracellular vesicle-borne cargo will be required to establish EVs as important signaling entities, especially when ascribing functional properties to a heterogeneous population of vesicles. Several molecular cascades operate within the endosomal network and at the plasma membrane that recognize and segregate cargos as a prelude to vesicle budding and release. EVs are transferred between cells and operate as vehicles in biological fluids within tissues and within the microenvironment where they are responsible for short- and long-range targeted information. In this review, we focus on the remarkable capacity of EVs to establish a dialogue between cells and within tissues, often operating in parallel to the endocrine system, we highlight selected examples of past and recent studies on the functions of EVs in health and disease.
Extracellular vesicles / biogenesis / intercellular communication / endocrine / homeostasis
| [1] |
Duve C, Wattiaux R. Functions of lysosomes.Annu Rev Physiol1966;28:435-92 |
| [2] |
Duve C. The significance of lysosomes in pathology and medicine.Proc Inst Med Chic1966;26:73-6 |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles.Nat Rev Mol Cell Biol2018;19:213-28 |
| [7] |
Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and directions in studying cell-cell communication by extracellular vesicles.Nat Rev Mol Cell Biol2022;23:369-82 |
| [8] |
Cicero A, Stahl PD, Raposo G. Extracellular vesicles shuffling intercellular messages: for good or for bad.Curr Opin Cell Biol2015;35:69-77 |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
Rus Jacquet A, Tancredi JL, Lemire AL, DeSantis MC, Li WP, O'Shea EK. The LRRK2 G2019S mutation alters astrocyte-to-neuron communication via extracellular vesicles and induces neuron atrophy in a human iPSC-derived model of Parkinson's disease.Elife2021;10 PMCID:PMC8514240 |
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
Poret A, Dibsy R, Merida P, Trausch A, Inamdar K, Muriaux D. Extracellular vesicles containing the I-BAR protein IRSp53 are released from the cell plasma membrane in an Arp2/3 dependent manner.Biol Cell2022;114:259-75 |
/
| 〈 |
|
〉 |