Emerging connections between GPI-anchored proteins and their extracellular carriers in colorectal cancer

Oleg S. Tutanov , Sarah E. Glass , Robert J. Coffey

Extracellular Vesicles and Circulating Nucleic Acids ›› 2023, Vol. 4 ›› Issue (2) : 195 -217.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2023, Vol. 4 ›› Issue (2) :195 -217. DOI: 10.20517/evcna.2023.17
Review

Emerging connections between GPI-anchored proteins and their extracellular carriers in colorectal cancer

Author information +
History +
PDF

Abstract

Although extracellular vesicles (EVs) were discovered over 40 years ago, there has been a resurgence of interest in secreted vesicles and their attendant cargo as novel modes of intracellular communication. In addition to vesicles, two amembranous nanoparticles, exomeres and supermeres, have been isolated and characterized recently. In this rapidly expanding field, it has been challenging to assign cargo and specific functions to a particular carrier. Refinement of isolation methods, well-controlled studies, and guidelines detailed by Minimal Information for Studies of Extracellular Vesicles (MISEV) are being employed to “bring order to chaos.” In this review, we will briefly summarize three types of extracellular carriers - small EVs (sEVs), exomeres, and supermeres - in the context of colorectal cancer (CRC). We found that a number of GPI-anchored proteins (GPI-APs) are overexpressed in CRC, are enriched in exosomes (a distinct subset of sEVs), and can be detected in exomeres and supermeres. This affords the opportunity to elaborate on GPI-AP biogenesis, modifications, and trafficking using DPEP1, a GPI-AP upregulated in CRC, as a prime example. We have cataloged the GPI-anchored proteins secreted in CRC and will highlight features of select CRC-associated GPI-anchored proteins we have detected. Finally, we will discuss the remaining challenges and future opportunities in studying these secreted GPI-APs in CRC.

Keywords

Extracellular vesicles / exosomes / exomeres / supermeres / GPI-anchored proteins / biomarkers / colorectal cancer

Cite this article

Download citation ▾
Oleg S. Tutanov, Sarah E. Glass, Robert J. Coffey. Emerging connections between GPI-anchored proteins and their extracellular carriers in colorectal cancer. Extracellular Vesicles and Circulating Nucleic Acids, 2023, 4(2): 195-217 DOI:10.20517/evcna.2023.17

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jeppesen DK,Franklin JL.Extracellular vesicles and nanoparticles: emerging complexities.Trends Cell Biol2023:S0962-8924(23)00005

[2]

Jeppesen DK,Franklin JL.Reassessment of exosome composition.Cell2019;177:428-445.e18 PMCID:PMC6664447

[3]

Niel G,Raposo G.Shedding light on the cell biology of extracellular vesicles.Nat Rev Mol Cell Biol2018;19:213-28

[4]

Mathivanan S,Simpson RJ.Exosomes: extracellular organelles important in intercellular communication.J Proteomics2010;73:1907-20

[5]

Kharaziha P,Li Q.Tumor cell-derived exosomes: a message in a bottle.Biochim Biophys Acta2012;1826:103-11

[6]

Valadi H,Bossios A,Lee JJ.Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Nat Cell Biol2007;9:654-9

[7]

Тамкович СН,Лактионов ПП,Tutanov OS.Экзосомы: механизмы возникновения, состав, транспорт, биологическая активность, использование в диагностике.Биол мембраны2016;33:163-75

[8]

Glass SE.Recent advances in the study of extracellular vesicles in colorectal cancer.Gastroenterology2022;163:1188-97 PMCID:PMC9613516

[9]

Cocucci E.Ectosomes and exosomes: shedding the confusion between extracellular vesicles.Trends Cell Biol2015;25:364-72

[10]

Sun H,Wu J.Extracellular vesicles in the development of cancer therapeutics.Int J Mol Sci2020;21:6097 PMCID:PMC7504131

[11]

Zhang H,Kim HS.Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation.Nat Cell Biol2018;20:332-43 PMCID:PMC5931706

[12]

Zhang Q,Jeppesen DK.Transfer of functional cargo in exomeres.Cell Rep2019;27:940-954.e6 PMCID:PMC6559347

[13]

Zhang Q,Higginbotham JN.Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets.Nat Cell Biol2021;23:1240-54

[14]

Tosar JP,Witwer K.Exomeres and supermeres: monolithic or diverse?.J Extracell Biol2022;1:e45 PMCID:PMC9610496

[15]

Zhang Q,Higginbotham JN,Coffey RJ.Comprehensive isolation of extracellular vesicles and nanoparticles.Nat Protoc2023:1462-87

[16]

Vidal M.Exosomes and GPI-anchored proteins: judicious pairs for investigating biomarkers from body fluids.Adv Drug Deliv Rev2020;161-162:110-23

[17]

Sangiorgio V,Palestini P.GPI-anchored proteins and lipid rafts.Ital J Biochem53, 98-111

[18]

Dolezal S,Kirby PS,Pierce M.Elevated levels of glycosylphosphatidylinositol (GPI) anchored proteins in plasma from human cancers detected by C. septicum alpha toxin.Cancer Biomark2014;14:55-62 PMCID:PMC4157464

[19]

Wang M,Cui Y,Jiang Y.CD73-positive extracellular vesicles promote glioblastoma immunosuppression by inhibiting T-cell clonal expansion.Cell Death Dis2021;12:1065 PMCID:PMC8578373

[20]

Igami K,Shiota M.Extracellular vesicles expressing CEACAM proteins in the urine of bladder cancer patients.Cancer Sci2022;113:3120-33 PMCID:PMC9459299

[21]

Hussein NH,El Tayebi HM.GPI-AP: unraveling a new class of malignancy mediators and potential immunotherapy targets.Front Oncol2020;10:537311 PMCID:PMC7746843

[22]

Kooijmans SA,Roffler SR,Vader P.Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting.J Extracell Vesicles2016;5:31053 PMCID:PMC4793259

[23]

Choi H,Yim HY,Yoo JK.Biodistribution of exosomes and engineering strategies for targeted delivery of therapeutic exosomes.Tissue Eng Regen Med2021;18:499-511 PMCID:PMC8325750

[24]

Brewis IA,Mehlert A,Hooper NM.Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures.J Biol Chem1995;270:22946-56

[25]

Kinoshita T.Glycosylphosphatidylinositol (GPI) anchors: biochemistry and cell biology: introduction to a thematic review series.J Lipid Res2016;57:4-5 PMCID:PMC4689333

[26]

Kinoshita T.Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling.J Lipid Res2016;57:6-24 PMCID:PMC4689344

[27]

Homans SW,Dwek RA,Anand R.Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein.Nature1988;333:269-72

[28]

Ferguson MA,Dwek RA.Glycosyl-phosphatidylinositol moiety that anchors trypanosoma brucei variant surface glycoprotein to the membrane.Science1988;239:753-9

[29]

Fankhauser .Structures of glycosylphosphatidylinositol membrane anchors from Saccharomyces cerevisiae.J Biol Chem1993;268:26365-74

[30]

Available from: https://www.uniprot.org/uniprotkb?facets=reviewed%3Atrue%2Cmodel_organism%3A9606&query=%28cc_scl_term%3ASL-9902%29 [Last accessed on 11 May 2023]

[31]

Kalra H,Ji H.Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation.PLoS Biol2012;10:e1001450 PMCID:PMC3525526

[32]

Fujihara Y.GPI-AP release in cellular, developmental, and reproductive biology.J Lipid Res2016;57:538-45 PMCID:PMC4808780

[33]

Saha S,Mayor S.GPI-anchored protein organization and dynamics at the cell surface.J Lipid Res2016;57:159-75 PMCID:PMC4727430

[34]

Brown DA.Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface.Cell1992;68:533-44

[35]

Simons K.Functional rafts in cell membranes.Nature1997;387:569-72

[36]

Lingwood D.Lipid rafts as a membrane-organizing principle.Science2010;327:46-50

[37]

Simons K.Lipid sorting in epithelial cells.Biochemistry1988;27:6197-202

[38]

Muñiz M.Trafficking of glycosylphosphatidylinositol anchored proteins from the endoplasmic reticulum to the cell surface.J Lipid Res2016;57:352-60 PMCID:PMC4767001

[39]

Bonifacino JS.The mechanisms of vesicle budding and fusion.Cell2004;116:153-66

[40]

Huang K.Affinity purification of glycosylphosphatidylinositol-anchored proteins by alpha-toxin.methods mol biol2022;2303:251-7

[41]

Fujita M.GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics.Biochim Biophys Acta2012;1821:1050-8

[42]

Nagpal JK,Jadallah S.Profiling the expression pattern of GPI transamidase complex subunits in human cancer.Mod Pathol2008;21:979-91 PMCID:PMC3082921

[43]

Sahu PK.The natural anticancer agent cantharidin alters GPI-anchored protein sorting by targeting Cdc1-mediated remodeling in endoplasmic reticulum.J Biol Chem2019;294:3837-52 PMCID:PMC6422101

[44]

Kinoshita T.Biosynthesis and biology of mammalian GPI-anchored proteins.Open Biol2020;10:190290 PMCID:PMC7125958

[45]

Galian C,Bulleid N.Efficient glycosylphosphatidylinositol (GPI) modification of membrane proteins requires a C-terminal anchoring signal of marginal hydrophobicity.J Biol Chem2012;287:16399-409 PMCID:PMC3351287

[46]

Howell S,Boileau G.A cleavable N-terminal signal peptide is not a prerequisite for the biosynthesis of glycosylphosphatidylinositol-anchored proteins.J Biol Chem1994;269:16993-6

[47]

Barlowe CK.Secretory protein biogenesis and traffic in the early secretory pathway.Genetics2013;193:383-410 PMCID:PMC3567731

[48]

Rivier AS,Michon L.Exit of GPI-anchored proteins from the ER differs in yeast and mammalian cells.Traffic2010;11:1017-33

[49]

Fujita M,Jaensch N.Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI.J Cell Biol2011;194:61-75 PMCID:PMC3135397

[50]

Castillon GA,Manzano-Lopez J.The yeast p24 complex regulates GPI-anchored protein transport and quality control by monitoring anchor remodeling.Mol Biol Cell2011;22:2924-36 PMCID:PMC3154887

[51]

Surma MA,Simons K.Lipid-dependent protein sorting at the trans-Golgi network.Biochim Biophys Acta2012;1821:1059-67

[52]

Maeda Y,Houjou T.Fatty acid remodeling of GPI-anchored proteins is required for their raft association.Mol Biol Cell2007;18:1497-506 PMCID:PMC1838968

[53]

Tashima Y,Murata C.PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins.Mol Biol Cell2006;17:1410-20 PMCID:PMC1382328

[54]

Keller P,Díaz E,Simons K.Multicolour imaging of post-Golgi sorting and trafficking in live cells.Nat Cell Biol2001;3:140-9

[55]

Hua W,Toomre D.Vectorial insertion of apical and basolateral membrane proteins in polarized epithelial cells revealed by quantitative 3D live cell imaging.J Cell Biol2006;172:1035-44 PMCID:PMC2063761

[56]

Paladino S,Catino MA.GPI-anchored proteins are directly targeted to the apical surface in fully polarized MDCK cells.J Cell Biol2006;172:1023-34 PMCID:PMC2063760

[57]

Ledesma MD,Dotti CG.Neuronal polarity: essential role of protein-lipid complexes in axonal sorting.Proc Natl Acad Sci U S A1998;95:3966-71 PMCID:PMC19946

[58]

Lisanti MP,Davitz MA.A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells.J Cell Biol1989;109:2145-56 PMCID:PMC2115867

[59]

Kokkonen N,Hassinen A.Abnormal golgi pH homeostasis in cancer cells impairs apical targeting of carcinoembryonic antigen by inhibiting its glycosyl-phosphatidylinositol anchor-Mediated association with lipid rafts.Antioxid Redox Signal2019;30:5-21 PMCID:PMC6276271

[60]

Meer G,Wijnaendts-van-Resandt RW.Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells.J Cell Biol1987;105:1623-35 PMCID:PMC2114647

[61]

Mays RW,Fritz BA.Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells.J Cell Biol1995;130:1105-15 PMCID:PMC2120560

[62]

Paladino S,Pillich R.Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins.J Cell Biol2004;167:699-709 PMCID:PMC2172584

[63]

Jaensch N,Watanabe R.Stable cell surface expression of GPI-anchored proteins, but not intracellular transport, depends on their fatty acid structure.Traffic2014;15:1305-29

[64]

Paladino S,Tivodar S.Oligomerization is a specific requirement for apical sorting of glycosyl-phosphatidylinositol-anchored proteins but not for non-raft-associated apical proteins.Traffic2007;8:251-8

[65]

Paladino S,Tivodar S.Different GPI-attachment signals affect the oligomerisation of GPI-anchored proteins and their apical sorting.J Cell Sci2008;121:4001-7

[66]

Paladino S,Tivodar S.Golgi sorting regulates organization and activity of GPI proteins at apical membranes.Nat Chem Biol2014;10:350-7 PMCID:PMC4027978

[67]

Benting JH,Simons K.N-Glycans mediate the apical sorting of a GPI-anchored, raft-associated protein in Madin-Darby canine kidney cells.J Cell Biol1999;146:313-20 PMCID:PMC2156177

[68]

Cheong KH,Schneeberger EE.VIP17/MAL, a lipid raft-associated protein, is involved in apical transport in MDCK cells.Proc Natl Acad Sci USA1999;96:6241-8 PMCID:PMC26866

[69]

Martín-Belmonte F,Millán J.The MAL proteolipid is necessary for the overall apical delivery of membrane proteins in the polarized epithelial Madin-Darby canine kidney and fischer rat thyroid cell lines.Mol Biol Cell2000;11:2033-45 PMCID:PMC14901

[70]

Lafont F,Verkade P.Annexin XIIIb associates with lipid microdomains to function in apical delivery.J Cell Biol1998;142:1413-27 PMCID:PMC2141766

[71]

Jacob R,Eikemeyer J.Annexin II is required for apical transport in polarized epithelial cells.J Biol Chem2004;279:3680-4

[72]

Snyers L,Prohaska R.Association of stomatin with lipid-protein complexes in the plasma membrane and the endocytic compartment.Eur J Cell Biol1999;78:802-12

[73]

Neumann-Giesen C,Beicht P.Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression.Biochem J2004;378:509-18 PMCID:PMC1223955

[74]

Zurzolo C,Caras IW,Rodriguez-Boulan E.Glycosylphosphatidylinositol-anchored proteins are preferentially targeted to the basolateral surface in Fischer rat thyroid epithelial cells.J Cell Biol1993;121:1031-9 PMCID:PMC2119695

[75]

Sarnataro D,Campana V,Nitsch L.PrPC is sorted to the basolateral membrane of epithelial cells independently of its association with rafts.Traffic2002;3:810-21

[76]

Puig B,Glatzel M.The GPI-anchoring of PrP: implications in sorting and pathogenesis.Prion2014;8:11-8 PMCID:PMC7030901

[77]

Young SG,Voss CV.GPIHBP1, an endothelial cell transporter for lipoprotein lipase.J Lipid Res2011;52:1869-84 PMCID:PMC3196223

[78]

Müller GA.The release of glycosylphosphatidylinositol-anchored proteins from the cell surface.Arch Biochem Biophys2018;656:1-18

[79]

Low MG.Glycosyl-phosphatidylinositol: a versatile anchor for cell surface proteins.FASEB J1989;3:1600-8

[80]

Lauc G.Shedding and uptake of gangliosides and glycosylphosphatidylinositol-anchored proteins.Biochim Biophys Acta2006;1760:584-602

[81]

Kuespert K,Hauck CR.CEACAMs: their role in physiology and pathophysiology.Curr Opin Cell Biol2006;18:565-71 PMCID:PMC7127089

[82]

Tchoupa AK,Hauck CR.Signaling by epithelial members of the CEACAM family - mucosal docking sites for pathogenic bacteria.Cell Commun Signal2014;12:27 PMCID:PMC4057559

[83]

Pakdel A,Mokarram P,Hosseini A.Regulation of carcinoembryonic antigen release from colorectal cancer cells.Mol Biol Rep2012;39:3695-704

[84]

Ferguson MA.Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures.Annu Rev Biochem1988;57:285-320

[85]

Cross GA.Cellular and genetic aspects of antigenic variation in trypanosomes.Annu Rev Immunol1990;8:83-110

[86]

Low MG.A phospholipase D specific for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma.Proc Natl Acad Sci U S A1988;85:980-4 PMCID:PMC279684

[87]

Stieger S,Jakob A.Enzymatic properties of phosphatidylinositol-glycan-specific phospholipase C from rat liver and phosphatidylinositol-glycan-specific phospholipase D from rat serum.Eur J Biochem1991;197:67-73

[88]

Deeg MA.[45] Glycosylphosphatidylinositol-phospholipase D: A tool for glycosylphosphatidylinositol structural analysis. Lipid Modifications of Proteins. Elsevier; 1995. pp. 630-40.

[89]

Flores-Borja F,Church V.Genetic regulation of mouse glycosylphosphatidylinositol-phospholipase D.Biochimie2004;86:275-82

[90]

Heller M,Brodbeck U.Generation by limited proteolysis of a catalytically active 39-kDa protein from the 115-kDa form of phosphatidylinositol-glycan-specific phospholipase D from bovine serum.Eur J Biochem1994;224:823-33

[91]

Springer TA.Folding of the N-terminal, ligand-binding region of integrin alpha-subunits into a beta-propeller domain.Proc Natl Acad Sci USA1997;94:65-72 PMCID:PMC19237

[92]

Wilhelm OG,Escott GM.Cellular glycosylphosphatidylinositol-specific phospholipase D regulates urokinase receptor shedding and cell surface expression.J Cell Physiol1999;180:225-35

[93]

Bugge TH,Flick MJ.The receptor for urokinase-type plasminogen activator is not essential for mouse development or fertility.J Biol Chem1995;270:16886-94

[94]

Yamamoto Y,Mori S,Kawaguchi N.Cleavage of carcinoembryonic antigen induces metastatic potential in colorectal carcinoma.Biochem Biophys Res Commun2005;333:223-9

[95]

Verghese GM,Caughey GH.Prostasin regulates epithelial monolayer function: cell-specific Gpld1-mediated secretion and functional role for GPI anchor.Am J Physiol Cell Physiol2006;291:C1258-70 PMCID:PMC2271112

[96]

Hummler E,Rieder A.The channel-activating protease CAP1/Prss8 is required for placental labyrinth maturation.PLoS One2013;8:e55796 PMCID:PMC3565977

[97]

Watanabe K,Strizzi L.Growth factor induction of Cripto-1 shedding by glycosylphosphatidylinositol-phospholipase D and enhancement of endothelial cell migration.J Biol Chem2007;282:31643-55

[98]

Ding J,Yan YT.Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo.Nature1998;395:702-7

[99]

Mateescu B,Alexander RP.Phase 2 of extracellular RNA communication consortium charts next-generation approaches for extracellular RNA research.iScience2022;25:104653 PMCID:PMC9358052

[100]

Tauro BJ,Mathias RA,Ji H.Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids.Mol Cell Proteomics2013;12:587-98 PMCID:PMC3591653

[101]

Thompson A,Wisco D,Winckler B.Recycling endosomes of polarized epithelial cells actively sort apical and basolateral cargos into separate subdomains.Mol Biol Cell2007;18:2687-97 PMCID:PMC1924834

[102]

Chen Y,Yin Y,Mao L.Mechanism of cargo sorting into small extracellular vesicles.Bioengineered2021;12:8186-201 PMCID:PMC8806638

[103]

Andreu Z.Tetraspanins in extracellular vesicle formation and function.Front Immunol2014;5:442 PMCID:PMC4165315

[104]

Apodaca G,Bryant DM.Role of membrane traffic in the generation of epithelial cell asymmetry.Nat Cell Biol2012;14:1235-43 PMCID:PMC3771702

[105]

Adachi H,Okamura N.Purification and characterization of human microsomal dipeptidase.J Biochem1989;105:957-61

[106]

Buckhaults .Secreted and cell surface genes expressed in benign and malignant colorectal tumors.Cancer Res61, 6996-7001

[107]

Zhao ZW,Yang LL.The identification of a common different gene expression signature in patients with colorectal cancer.Math Biosci Eng2019;16:2942-58

[108]

Tachibana K,Imai JI.Clinicopathological examination of dipeptidase 1 expression in colorectal cancer.Biomed Rep2017;6:423-8

[109]

Liu Q,Yang C.DPEP1 promotes the proliferation of colon cancer cells via the DPEP1/MYC feedback loop regulation.Biochem Biophys Res Commun2020;532:520-7

[110]

Toiyama Y,Yasuda H.DPEP1, expressed in the early stages of colon carcinogenesis, affects cancer cell invasiveness.J Gastroenterol2011;46:153-63

[111]

Park SY,Cho HJ.Dehydropeptidase 1 promotes metastasis through regulation of E-cadherin expression in colon cancer.Oncotarget2016;7:9501-12 PMCID:PMC4891055

[112]

Zeng C,Shen Y.DPEP1 promotes drug resistance in colon cancer cells by forming a positive feedback loop with ASCL2.Cancer Med2023;12:412-24

[113]

Liu Z,Bernardino EMA.Isolation and characterization of human urine extracellular vesicles.Cell Stress Chaperones2018;23:943-53 PMCID:PMC6111092

[114]

Stokman MF,Schelfhorst T.Changes in the urinary extracellular vesicle proteome are associated with nephronophthisis-related ciliopathies.J Proteomics2019;192:27-36

[115]

Choi DS,Hong BS.Quantitative proteomics of extracellular vesicles derived from human primary and metastatic colorectal cancer cells.J Extracell Vesicles2012;1:18704 PMCID:PMC3760640

[116]

Choudhury SR,Rahn JJ.Dipeptidase-1 Is an Adhesion Receptor for Neutrophil Recruitment in Lungs and Liver.Cell2019;178:1205-1221.e17

[117]

Lau A,Chappellaz M.Dipeptidase-1 governs renal inflammation during ischemia reperfusion injury.Sci Adv2022;8:eabm0142 PMCID:PMC8809686

[118]

Zhang Q,Higginbotham JN,Crowe JE Jr.Angiotensin-converting Enzyme 2-containing Small Extracellular Vesicles and Exomeres Bind the Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein.Gastroenterology2021;160:958-961.e3 PMCID:PMC7832655

[119]

Roh M,Wu JD,Zhang B.Targeting CD73 to augment cancer immunotherapy.Curr Opin Pharmacol2020;53:66-76 PMCID:PMC7669683

[120]

Airas L,Jalkanen S.CD73 engagement promotes lymphocyte binding to endothelial cells via a lymphocyte function-associated antigen-1-dependent mechanism.J Immunol2000;165:5411-7

[121]

Gao ZW,Zhang HZ.The roles of CD73 in cancer.Biomed Res Int2014;2014:460654 PMCID:PMC4121992

[122]

Zhang F,Yang Y.Specific Decrease in B-Cell-Derived Extracellular Vesicles Enhances Post-Chemotherapeutic CD8(+) T Cell Responses.Immunity2019;50:738-750.e7

[123]

Clayton A,Webber J,Tabi Z.Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production.J Immunol2011;187:676-83

[124]

Ludwig N,Azambuja JH.Tumor-derived exosomes promote angiogenesis via adenosine A(2B) receptor signaling.Angiogenesis2020;23:599-610

[125]

Turiello R,Morretta E.Exosomal CD73 from serum of patients with melanoma suppresses lymphocyte functions and is associated with therapy resistance to anti-PD-1 agents.J Immunother Cancer2022;10:e004043 PMCID:PMC8915288

[126]

Ploeg EM,Britsch I.Bispecific antibody CD73xEpCAM selectively inhibits the adenosine-mediated immunosuppressive activity of carcinoma-derived extracellular vesicles.Cancer Lett2021;521:109-18

[127]

Harvey JB,Villarreal OE.CD73's Potential as an Immunotherapy Target in Gastrointestinal Cancers.Front Immunol2020;11:508 PMCID:PMC7174602

[128]

Hammarström S.The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues.Semin Cancer Biol1999;9:67-81

[129]

Johnson B.Emerging role and targeting of carcinoembryonic antigen-related cell adhesion Molecule 6 (CEACAM6) in human malignancies.Clin Cancer Drugs2015;2:100-11 PMCID:PMC4997943

[130]

Benchimol S,Jothy S,Shirota K.Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule.Cell1989;57:327-34

[131]

Chan CH.Recent advances in the tumour biology of the GPI-anchored carcinoembryonic antigen family members CEACAM5 and CEACAM6.Curr Oncol2007;14:70-3 PMCID:PMC1891201

[132]

Blumenthal RD,Goldenberg DM.Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen).Cancer Res2005;65:8809-17

[133]

Beauchemin N.Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis.Cancer Metastasis Rev2013;32:643-71

[134]

Gemei M,Di Noto R.CD66c is a novel marker for colorectal cancer stem cell isolation, and its silencing halts tumor growth in vivo.Cancer2013;119:729-38

[135]

Pinkert J,Trautwein M.T cell-mediated elimination of cancer cells by blocking CEACAM6-CEACAM1 interaction.Oncoimmunology2022;11:2008110

[136]

Sørensen CG,Pommergaard HC,Rosenberg J.The diagnostic accuracy of carcinoembryonic antigen to detect colorectal cancer recurrence - A systematic review.Int J Surg2016;25:134-44

[137]

Kang Y,Lin Z.Compare the diagnostic and prognostic value of MLR, NLR and PLR in CRC patients.Clin Lab2021;67

[138]

Ma Y,Bi Y.Diagnostic value of carcinoembryonic antigen combined with cytokines in serum of patients with colorectal cancer.Medicine2022;101:e30787 PMCID:PMC9478299

[139]

Wang .Combined detection of preoperative serum CEA, CA19-9 and CA242 improve prognostic prediction of surgically treated colorectal cancer patients.Int J Clin Exp Pathol2015;8:14853-63 PMCID:PMC4713601

[140]

Xu Z,Gao L,Wang X.YAP levels combined with plasma CEA levels are prognostic biomarkers for early-clinical-stage patients of colorectal cancer.Biomed Res Int2019;2019:2170830 PMCID:PMC6899294

[141]

Belov L,Hallal S,Mulligan SP.Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples.J Extracell Vesicles2016;5:25355 PMCID:PMC4834364

[142]

Yokoyama S,Yamaguchi S.Clinical implications of carcinoembryonic antigen distribution in serum exosomal fraction-Measurement by ELISA.PLoS One2017;12:e0183337

[143]

Eddama MMR,Fragkos K.The role of microvesicles as biomarkers in the screening of colorectal neoplasm.Cancer Med2022;11:2957-68 PMCID:PMC9359869

[144]

Lee CH,Moon PG.Discovery of a diagnostic biomarker for colon cancer through proteomic profiling of small extracellular vesicles.BMC Cancer2018;18:1058 PMCID:PMC6211419

[145]

Sun B,Zhou Y.Circulating exosomal CPNE3 as a diagnostic and prognostic biomarker for colorectal cancer.J Cell Physiol2019;234:1416-25

[146]

Xiao Y,Zhong B.Exosomes as potential sources of biomarkers in colorectal cancer.Cancer Lett2020;476:13-22

[147]

Ikeda A,Sumazaki M.Colorectal cancer-derived CAT1-positive extracellular vesicles alter nitric oxide metabolism in endothelial cells and promote angiogenesis.Mol Cancer Res2021;19:834-46

[148]

Keyhani G,Salimi A.Effect of extracellular vesicles of Lactobacillus rhamnosus GG on the expression of CEA gene and protein released by colorectal cancer cells.Iran J Microbiol2022;14:90-6 PMCID:PMC9085540

[149]

Wang S,Bai B.The expression, regulation, and biomarker potential of glypican-1 in cancer.Front Oncol2019;9:614 PMCID:PMC6640540

[150]

Lu F,Shi W,Wu H.GPC1 promotes the growth and migration of colorectal cancer cells through regulating the TGF-β1/SMAD2 signaling pathway.PLoS One2022;17:e0269094 PMCID:PMC9173621

[151]

Melo SA,Kahlert C.Glypican-1 identifies cancer exosomes and detects early pancreatic cancer.Nature2015;523:177-82 PMCID:PMC4825698

[152]

Papiewska-Pająk I,Katela M.Glypican-1 level is elevated in extracellular vesicles released from MC38 colon adenocarcinoma cells overexpressing snail.Cells2020;9:1585 PMCID:PMC7408449

[153]

Li J,Guo X.GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer.J Cell Mol Med2017;21:838-47 PMCID:PMC5387162

[154]

L Ramos T,Muntión S.MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry.Cell Commun Signal2016;14:2 PMCID:PMC4709865

[155]

Rabesandratana H,Reggio H.Decay-accelerating factor (CD55) and membrane inhibitor of reactive lysis (CD59) are released within exosomes during in vitro maturation of reticulocytes.Blood1998; 91:2573-80.

[156]

Liu D,Song YK.Recognition and clearance of liposomes containing phosphatidylserine are mediated by serum opsonin.Biochim Biophys Acta1995;1235:140-6

[157]

Wassef NM,Alving CR.Complement-dependent phagocytosis of liposomes by macrophages: suppressive effects of "stealth" lipids.Biochem Biophys Res Commun1991;176:866-74

[158]

López-Cobo S,Valés-Gómez M.Glycosyl-phosphatidyl-inositol (GPI)-anchors and metalloproteases: their roles in the regulation of exosome composition and NKG2D-mediated immune recognition.Front Cell Dev Biol2016;4:97 PMCID:PMC5019032

[159]

Laulagnier K,Hamdi S.Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization.Biochem J2004;380:161-71 PMCID:PMC1224152

[160]

Stalder D.Direct trafficking pathways from the Golgi apparatus to the plasma membrane.Semin Cell Dev Biol2020;107:112-25 PMCID:PMC7152905

[161]

Vidal M,Hoekstra D.Aggregation reroutes molecules from a recycling to a vesicle-mediated secretion pathway during reticulocyte maturation.J Cell Sci1997;110 ( Pt 16):1867-77

[162]

Edgar JR,Nishimura S,Robinson MS.Tetherin is an exosomal tether.Elife2016;5:e17180 PMCID:PMC5033606

[163]

Tanaka Y,Hirokawa N.FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination.Nature2005;435:172-7

[164]

Panáková D,Marois E,Eaton S.Lipoprotein particles are required for Hedgehog and Wingless signalling.Nature2005;435:58-65

[165]

Eliakim R,Nogee L,Alpers DH.Isolation and characterization of a small intestinal surfactant-like particle containing alkaline phosphatase and other digestive enzymes.J Biol Chem1989;264:20614-19

[166]

Strybel U,Zeman M.Molecular Composition of Serum Exosomes Could Discriminate Rectal Cancer Patients with Different Responses to Neoadjuvant Radiotherapy.Cancers (Basel)2022;14:993 PMCID:PMC8870712

[167]

Chen Q,Noda C,Takada S.Different populations of Wnt-containing vesicles are individually released from polarized epithelial cells.Sci Rep2016;6:35562 PMCID:PMC5073244

[168]

Théry C,Aikawa E.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.J Extracell Vesicles2018;7:1535750 PMCID:PMC6322352

[169]

Wei D,Gao Y.RAB31 marks and controls an ESCRT-independent exosome pathway.Cell Res2021;31:157-77 PMCID:PMC8027411

[170]

Clancy JW,D'Souza-Schorey C.Profiling and promise of supermeres.Nat Cell Biol2021;23:1217-9 PMCID:PMC8656135

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/