Hijacking intercellular trafficking for the spread of protein aggregates in neurodegenerative diseases: a focus on tunneling nanotubes (TNTs)

Ranabir Chakraborty , Sevan Belian , Chiara Zurzolo

Extracellular Vesicles and Circulating Nucleic Acids ›› 2023, Vol. 4 ›› Issue (1) : 27 -43.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2023, Vol. 4 ›› Issue (1) :27 -43. DOI: 10.20517/evcna.2023.05
Review

Hijacking intercellular trafficking for the spread of protein aggregates in neurodegenerative diseases: a focus on tunneling nanotubes (TNTs)

Author information +
History +
PDF

Abstract

Over the years, the influence of secretory mechanisms on intercellular communication has been extensively studied. In the central nervous system (CNS), both trans-synaptic (neurotransmitter-based) and long-distance (extracellular vesicles-based) communications regulate activities and homeostasis. In less than a couple of decades, however, there has been a major paradigm shift in our understanding of intercellular communication. Increasing evidence suggests that besides secretory mechanisms (via extracellular vesicles), several cells are capable of establishing long-distance communication routes referred to as Tunneling Nanotubes (TNTs). TNTs are membranous bridges classically supported by F-Actin filaments, allowing for the exchange of different types of intracellular components between the connected cells, ranging from ions and organelles to pathogens and toxic protein aggregates. The roles of TNTs in pathological spreading of several neurodegenerative conditions such as Prion diseases, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) have been well established. However, the fragile nature of these structures and lack of specific biomarkers raised some skepticism regarding their existence. In this review, we will first place TNTs within the spectrum of intercellular communication mechanisms before discussing their known and hypothesized biological relevance in vitro and in vivo in physiological and neurodegenerative contexts. Finally, we discuss the challenges and promising prospects in the field of TNT studies.

Keywords

Tunneling nanotubes / intercellular communication / neurodegenerative diseases

Cite this article

Download citation ▾
Ranabir Chakraborty, Sevan Belian, Chiara Zurzolo. Hijacking intercellular trafficking for the spread of protein aggregates in neurodegenerative diseases: a focus on tunneling nanotubes (TNTs). Extracellular Vesicles and Circulating Nucleic Acids, 2023, 4(1): 27-43 DOI:10.20517/evcna.2023.05

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Handly LN,Wollman R.Paracrine communication maximizes cellular response fidelity in wound signaling.Elife2015;4:e09652 PMCID:PMC4686426

[2]

Sánchez G, Bunn KE, Pua HH, Rafat M. Extracellular vesicles: mediators of intercellular communication in tissue injury and disease.Cell Commun Signal2021;19:104 PMCID:PMC8520651

[3]

Cocucci E.Ectosomes and exosomes: shedding the confusion between extracellular vesicles.Trends Cell Biol2015;25:364-72

[4]

Gould SJ,Hildreth JE.The Trojan exosome hypothesis.Proc Natl Acad Sci USA2003;100:10592-7 PMCID:PMC196848

[5]

Vella LJ,Lawson VA,Cappai R.Packaging of prions into exosomes is associated with a novel pathway of PrP processing.J Pathol2007;211:582-90

[6]

Ramakrishnaiah V,Fofana I.Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells.Proc Natl Acad Sci USA2013;110:13109-13 PMCID:PMC3740869

[7]

Robbins PD.Regulation of immune responses by extracellular vesicles.Nat Rev Immunol2014;14:195-208 PMCID:PMC4350779

[8]

Abels ER.Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake.Cell Mol Neurobiol2016;36:301-12 PMCID:PMC5546313

[9]

Alli AA. Mechanisms of extracellular vesicle biogenesis, cargo loading, and release. IntechOpen; 2021. Available from: https://www.intechopen.com/chapters/79084 [Last accessed on 7 Mar 2023]

[10]

Beer KB.Mechanisms and functions of extracellular vesicle release in vivo-What we can learn from flies and worms.Cell Adh Migr2017;11:135-50 PMCID:PMC5351733

[11]

Chiang CY.Toward characterizing extracellular vesicles at a single-particle level.J Biomed Sci2019;26:9 PMCID:PMC6332877

[12]

Théry C,Aikawa E.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.J Extracell Vesicles2018;7:1535750 PMCID:PMC6322352

[13]

Record M,Poirot M.Extracellular vesicles: lipids as key components of their biogenesis and functions.J Lipid Res2018;59:1316-24 PMCID:PMC6071772

[14]

Yu S.Migrasome biogenesis and functions.FEBS J2022;289:7246-54 PMCID:PMC9786993

[15]

Ma L,Peng J.Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration.Cell Res2015;25:24-38 PMCID:PMC4650581

[16]

Fierro-González JC,Silva JC.Cadherin-dependent filopodia control preimplantation embryo compaction.Nat Cell Biol2013;15:1424-33

[17]

Shen B,Du X.Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction.Curr Opin Cell Biol2012;24:600-6 PMCID:PMC3479359

[18]

Heckman CA.Filopodia as sensors.Cell Signal2013;25:2298-311

[19]

Mattila PK.Filopodia: molecular architecture and cellular functions.Nat Rev Mol Cell Biol2008;9:446-54

[20]

Arjonen A,Ivaska J.Filopodia and adhesion in cancer cell motility.Cell Adh Migr2011;5:421-30 PMCID:PMC3218609

[21]

Korenkova O,Zurzolo C.Fine intercellular connections in development: TNTs, cytonemes, or intercellular bridges?.Cell Stress2020;4:30-43

[22]

González-Méndez L,Guerrero I.The cytoneme connection: direct long-distance signal transfer during development.Development2019;146:dev174607

[23]

Huang H,Kornberg TB.Glutamate signaling at cytoneme synapses.Science2019;363:948-55 PMCID:PMC7008667

[24]

Ramírez-Weber FA.Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs.Cell1999;97:599-607

[25]

Akiyama-Oda Y.Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells.Development2003;130:1735-47

[26]

Kasschau MR,Sperber LM.Formation of filopodia in earthworm (Lumbricus terrestris) coelomocytes in response to osmotic stress.Zoology (Jena)2007;110:66-76

[27]

Haimovich G,Gerst JE.RNA transfer through tunneling nanotubes.Biochem Soc Trans2021;49:145-60

[28]

Abounit S.Wiring through tunneling nanotubes-from electrical signals to organelle transfer.J Cell Sci2012;125:1089-98

[29]

Zurzolo C.Tunneling nanotubes: reshaping connectivity.Curr Opin Cell Biol2021;71:139-47

[30]

Sartori-Rupp A,Pepe A.Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells.Nat Commun2019;10:342 PMCID:PMC6341166

[31]

Wang X,Gerdes HH.Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes.PLoS One2012;7:e47429 PMCID:PMC3469499

[32]

Chinnery HR,McMenamin PG.Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea.J Immunol2008;180:5779-83 PMCID:PMC3392179

[33]

Chinnery HR.Tunneling nanotubes and the eye: intercellular communication and implications for ocular health and disease.Biomed Res Int2020;2020:7246785 PMCID:PMC7171654

[34]

Alarcon-Martinez L,Quintero H.Interpericyte tunnelling nanotubes regulate neurovascular coupling.Nature2020;585:91-5

[35]

Kumar A,Ranjan P.Influenza virus exploits tunneling nanotubes for cell-to-cell spread.Sci Rep2017;7:40360 PMCID:PMC5216422

[36]

Zhu C,You J.Immune cell connection by tunneling nanotubes: the impact of intercellular cross-talk on the immune response and its therapeutic applications.Mol Pharm2021;18:772-86

[37]

Dupont M,Lugo-Villarino G,Vérollet C.tunneling nanotubes: intimate communication between myeloid cells.Front Immunol2018;9:43 PMCID:PMC5788888

[38]

Batista-almeida D,Martins-marques T.Ischaemia impacts TNT-mediated communication between cardiac cells.Curr Res Cell Biol2020;1:100001

[39]

Resnik N,Veranič P.Triple labelling of actin filaments, intermediate filaments and microtubules for broad application in cell biology: uncovering the cytoskeletal composition in tunneling nanotubes.Histochem Cell Biol2019;152:311-7

[40]

Onfelt B,Benninger RK.Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria.J Immunol2006;177:8476-83

[41]

Rustom A,Markovic I,Gerdes HH.Nanotubular highways for intercellular organelle transport.Science2004;303:1007-10

[42]

Omsland M,Gjertsen BT.Tunneling nanotube (TNT) formation is downregulated by cytarabine and NF-κB inhibition in acute myeloid leukemia (AML).Oncotarget2017;8:7946-63 PMCID:PMC5352373

[43]

Desir S,Vogel RI.Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells.Oncotarget2016;7:43150-61 PMCID:PMC5190014

[44]

Lou E,Sarkari A.Cellular and molecular networking within the ecosystem of cancer cell communication via tunneling nanotubes.Front Cell Dev Biol2018;6:95 PMCID:PMC6176212

[45]

Eugenin EA,Berman JW.Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking.Cell Immunol2009;254:142-8 PMCID:PMC2701345

[46]

Pepe A,Vos M,Zurzolo C.Tunneling nanotubes provide a route for SARS-CoV-2 spreading.Sci Adv2022;8:eabo0171 PMCID:PMC9299553

[47]

Panasiuk M,Derewońko N.Tunneling Nanotubes as a novel route of cell-to-cell spread of herpesviruses.J Virol2018;92 PMCID:PMC5923070

[48]

Victoria GS.The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases.J Cell Biol2017;216:2633-44 PMCID:PMC5584166

[49]

Burt R,Aref S.Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress.Blood2019;134:1415-29 PMCID:PMC6856969

[50]

Pasquier J,Al Thawadi H.Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance.J Transl Med2013;11:94 PMCID:PMC3668949

[51]

Pinto G,Chastagner P.Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids.Biochem J2021;478:21-39 PMCID:PMC7800365

[52]

Valdebenito S,Luu R.Tunneling nanotubes, TNT, communicate glioblastoma with surrounding non-tumor astrocytes to adapt them to hypoxic and metabolic tumor conditions.Sci Rep2021;11:14556 PMCID:PMC8282675

[53]

Henderson JM,Chaze T.Arp2/3 inhibition switches Eps8’s network associations to favour longer actin filament formation necessary for tunneling nanotubes.bioRxiv2022;

[54]

Gousset K,Commere PH.Myo10 is a key regulator of TNT formation in neuronal cells.J Cell Sci2013;126:4424-35

[55]

Ljubojevic N,Zurzolo C.The ways of actin: why tunneling nanotubes are unique cell protrusions.Trends Cell Biol2021;31:130-42

[56]

Bhat S,Zhu S,Echard A.Rab35 and its effectors promote formation of tunneling nanotubes in neuronal cells.Sci Rep2020;10:16803 PMCID:PMC7544914

[57]

Delage E,Pénard E.Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes.Sci Rep2016;6:39632 PMCID:PMC5180355

[58]

Kim JH,Duan R.Mechanisms of myoblast fusion during muscle development.Curr Opin Genet Dev2015;32:162-70 PMCID:PMC4508005

[59]

Pepe A,Sartori-Rupp A,Zurzolo C.N-Cadherin and alpha-catenin regulate formation of functional tunneling nanotubes.BioRxiv2023;

[60]

Manzano RN,Rubinstein E,Zurzolo C.Proteomic landscape of tunneling nanotubes reveals CD9 and CD81 tetraspanins as key regulators.Cell Biology2022;

[61]

Kolba MD,Zaręba-Kozioł M.Tunneling nanotube-mediated intercellular vesicle and protein transfer in the stroma-provided imatinib resistance in chronic myeloid leukemia cells.Cell Death Dis2019;10:817 PMCID:PMC6817823

[62]

Sun X,Zhang J.Tunneling-nanotube direction determination in neurons and astrocytes.Cell Death Dis2012;3:e438 PMCID:PMC3542613

[63]

Yamashita YM,Buszczak M.Specialized intercellular communications via cytonemes and nanotubes.Annu Rev Cell Dev Biol2018;34:59-84 PMCID:PMC6404750

[64]

Hu HT,Matsubara D.Involvement of I-BAR protein IRSp53 in tumor cell growth via extracellular microvesicle secretion.BioRxiv2020;

[65]

Poret A,Merida P,Inamdar K.Extracellular vesicles containing the I-BAR protein IRSp53 are released from the cell plasma membrane in an Arp2/3 dependent manner.Biol Cell2022;114:259-75

[66]

Frolikova M,Cerny J.CD9 and CD81 Interactions and Their Structural Modelling in Sperm Prior to Fertilization.Int J Mol Sci2018;19:1236 PMCID:PMC5979608

[67]

Gerdes HH.Intercellular transfer mediated by tunneling nanotubes.Curr Opin Cell Biol2008;20:470-5

[68]

Cervantes D. Peering into tunneling nanotubes-The path forward.EMBO J2021;40:e105789 PMCID:PMC8047439

[69]

Loria F,Bousset L.α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading.Acta Neuropathol2017;134:789-808

[70]

Dilsizoglu Senol A,Syan S.α-Synuclein fibrils subvert lysosome structure and function for the propagation of protein misfolding between cells through tunneling nanotubes.PLoS Biol2021;19:e3001287 PMCID:PMC8291706

[71]

Chastagner P,Vargas JY.Fate and propagation of endogenously formed Tau aggregates in neuronal cells.EMBO Mol Med2020;12:e12025 PMCID:PMC7721367

[72]

Wang X.Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells.Cell Death Differ2015;22:1181-91 PMCID:PMC4572865

[73]

Plotnikov EY,Galkina SI,Zorov DB.Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture.Exp Cell Res2010;316:2447-55

[74]

He K,Zhang X.Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes.Cardiovasc Res2011;92:39-47

[75]

Watkins SC.Functional connectivity between immune cells mediated by tunneling nanotubules.Immunity2005;23:309-18

[76]

Hase K,Takatsu H.M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex.Nat Cell Biol2009;11:1427-32

[77]

Smith IF,Parker I.Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes.Biophys J2011;100:L37-9 PMCID:PMC3077701

[78]

Wang X,Bukoreshtliev NV,Gerdes HH.Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels.Proc Natl Acad Sci USA2010;107:17194-9 PMCID:PMC2951457

[79]

Sowinski S,Berninghausen O.Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission.Nat Cell Biol2008;10:211-9

[80]

Arkwright PD,Tour J.Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes.Cell Res2010;20:72-88 PMCID:PMC2822704

[81]

Chauveau A,Eissmann P,Davis DM.Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells.Proc Natl Acad Sci USA2010;107:5545-50 PMCID:PMC2851811

[82]

Chen J.Astrocyte-to-neuron transportation of enhanced green fluorescent protein in cerebral cortex requires F-actin dependent tunneling nanotubes.Sci Rep2021;11:16798 PMCID:PMC8373867

[83]

Lin TK,Chuang YC.Mitochondrial Transfer of Wharton’s Jelly Mesenchymal Stem Cells Eliminates Mutation Burden and Rescues Mitochondrial Bioenergetics in Rotenone-Stressed MELAS Fibroblasts.Oxid Med Cell Longev2019;2019:9537504 PMCID:PMC6556302

[84]

Haimovich G,Dunagin MC.Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells.Proc Natl Acad Sci USA2017;114:E9873-82 PMCID:PMC5699038

[85]

Su Q.Keratinocytes Share gene expression fingerprint with epidermal langerhans cells via mRNA transfer.J Invest Dermatol2019;139:2313-2323.e8

[86]

El Najjar F,Chen J.Human metapneumovirus Induces reorganization of the actin cytoskeleton for direct cell-to-cell spread.PLoS Pathog2016;12:e1005922 PMCID:PMC5040343

[87]

Anand S,Acevedo LM.MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis.Nat Med2010;16:909-14 PMCID:PMC3094020

[88]

Thayanithy V,Steer C,Lou E.Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes.Transl Res2014;164:359-65 PMCID:PMC4242806

[89]

Lu JJ,Li F,Chen Z.Tunneling nanotubes mediated microrna-155 intercellular transportation promotes bladder cancer cells' invasive and proliferative capacity.Int J Nanomedicine2019;14:9731-43 PMCID:PMC6911338

[90]

Onfelt B,Yanagi K.Cutting edge: membrane nanotubes connect immune cells.J Immunol2004;173:1511-3

[91]

Marzo L,Zurzolo C.Multifaceted roles of tunneling nanotubes in intercellular communication.Front Physiol2012;3 PMCID:PMC3322526

[92]

Vignais ML,Brondello JM.Cell connections by tunneling nanotubes: effects of mitochondrial trafficking on target cell metabolism, homeostasis, and response to therapy.Stem Cells Int2017;2017:6917941 PMCID:PMC5474251

[93]

Koyanagi M,Haendeler J,Dimmeler S.Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes?.Circ Res2005;96:1039-41

[94]

Cheng XY,Li J.Human iPSCs derived astrocytes rescue rotenone-induced mitochondrial dysfunction and dopaminergic neurodegeneration in vitro by donating functional mitochondria.Transl Neurodegener2020;9:13 PMCID:PMC7325238

[95]

Rostami J,Lindström V.Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes.J Neurosci2017;37:11835-53 PMCID:PMC5719970

[96]

Chakraborty R.Tunneling nanotubes between neuronal and microglial cells allow bi-directional transfer of α-Synuclein and mitochondria. 2022:2022.12.13.519450.

[97]

Gousset K,Langevin C.Prions hijack tunnelling nanotubes for intercellular spread.Nat Cell Biol2009;11:328-36

[98]

Kadiu I.Human immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits facilitates spread of infection.J Neuroimmune Pharmacol2011;6:658-75 PMCID:PMC3232570

[99]

Braak H.Neuropathological stageing of Alzheimer-related changes.Acta Neuropathol1991;82:239-59

[100]

Bellingham S,Coleman B.Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?.Front Physiol2012;3 PMCID:PMC3342525

[101]

Fevrier B,Archer F.Cells release prions in association with exosomes.Proc Natl Acad Sci USA2004;101:9683-8 PMCID:PMC470735

[102]

Saman S,Raya M.Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease.J Biol Chem2012;287:3842-9 PMCID:PMC3281682

[103]

Vingtdeux V,Loyens A.Alkalizing drugs induce accumulation of amyloid precursor protein by-products in luminal vesicles of multivesicular bodies.J Biol Chem2007;282:18197-205

[104]

Emmanouilidou E,Roumeliotis T.Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival.J Neurosci2010;30:6838-51 PMCID:PMC3842464

[105]

Delenclos M,Mahesh D.Investigation of endocytic pathways for the internalization of exosome-associated oligomeric alpha-synuclein.Front Neurosci2017;11 PMCID:PMC5371652

[106]

Gomes C,Altevogt P.Evidence for secretion of Cu,Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis.Neurosci Lett2007;428:43-6

[107]

Basso M,Tortarolo M.Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis.J Biol Chem2013;288:15699-711 PMCID:PMC3668729

[108]

Silverman JM,Shyu CC.CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)(G93A) ALS mice originate from astrocytes and neurons and carry misfolded SOD1.J Biol Chem2019;294:3744-59 PMCID:PMC6416428

[109]

Zhang X,Redzic JS,Finkbeiner S.Potential Transfer of polyglutamine and CAG-repeat RNA in extracellular vesicles in huntington’s disease: background and evaluation in cell culture.Cell Mol Neurobiol2016;36:459-70 PMCID:PMC5844350

[110]

Jeon I,Cisbani G.Human-to-mouse prion-like propagation of mutant huntingtin protein.Acta Neuropathol2016;132:577-92 PMCID:PMC5023734

[111]

Will RG,Zeidler M.A new variant of Creutzfeldt-Jakob disease in the UK.Lancet1996;347:921-5

[112]

Langevin C,Costanzo M,Zurzolo C.Characterization of the role of dendritic cells in prion transfer to primary neurons.Biochem J2010;431:189-98

[113]

Zhu S,Marzo L,Zurzolo C.Prion aggregates transfer through tunneling nanotubes in endocytic vesicles.Prion2015;9:125-35 PMCID:PMC4601206

[114]

Victoria GS,Zhu S,Zurzolo C.Astrocyte-to-neuron intercellular prion transfer is mediated by cell-cell contact.Sci Rep2016;6:20762 PMCID:PMC4746738

[115]

Wang Y,Sun X.Tunneling-nanotube development in astrocytes depends on p53 activation.Cell Death Differ2011;18:732-42 PMCID:PMC3131904

[116]

Dilna A,Damodaran N.Amyloid-β induced membrane damage instigates tunneling nanotube-like conduits by p21-activated kinase dependent actin remodulation.Biochim Biophys Acta Mol Basis Dis2021;1867:166246

[117]

Abounit S,Duff K,Zurzolo C.Tunneling nanotubes: a possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases.Prion2016;10:344-51 PMCID:PMC5105909

[118]

Tardivel M,Bousset L.Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies.Acta Neuropathol Commun2016;4:117 PMCID:PMC5096005

[119]

Scheiblich H,Mercan D.Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes.Cell2021;184:5089-5106.e21 PMCID:PMC8527836

[120]

Abounit S,Loria F.Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes.EMBO J2016;35:2120-38 PMCID:PMC5048354

[121]

Grudina C,Nonaka T,Matsas R.Human NPCs can degrade α-syn fibrils and transfer them preferentially in a cell contact-dependent manner possibly through TNT-like structures.Neurobiol Dis2019;132:104609

[122]

Dieriks BV,Fourie C,Dragunow M.α-synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson's disease patients.Sci Rep2017;7:42984 PMCID:PMC5322400

[123]

Costanzo M,Marzo L.Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes.J Cell Sci2013;126:3678-85

[124]

Sharma M.Rhes travels from cell to cell and transports Huntington disease protein via TNT-like protrusion.J Cell Biol2019;218:1972-93 PMCID:PMC6548131

[125]

Ramírez-Jarquín UN,Shahani N,Boregowda S.Rhes protein transits from neuron to neuron and facilitates mutant huntingtin spreading in the brain.Sci Adv2022;8:eabm3877 PMCID:PMC8942366

[126]

Li A,Deng L.Mechanical properties of tunneling nanotube and its mechanical stability in human embryonic kidney cells.Front Cell Dev Biol2022;10:955676 PMCID:PMC9551289

[127]

Abounit S,Zurzolo C.Identification and characterization of tunneling nanotubes for intercellular trafficking.Curr Protoc Cell Biol2015;67:12.10.1-12.10.21

[128]

Jacquemet G,Saup R.Filopodome mapping identifies p130Cas as a mechanosensitive regulator of filopodia stability.Curr Biol2019;29:202-216.e7 PMCID:PMC6345628

[129]

Austefjord MW,Wang X.Tunneling nanotubes: diversity in morphology and structure.Commun Integr Biol2014;7:e27934 PMCID:PMC3995728

[130]

Tarasiuk O,Donzelli E.Making connections: mesenchymal stem cells manifold ways to interact with neurons.Int J Mol Sci2022;23:5791 PMCID:PMC9146463

AI Summary AI Mindmap
PDF

231

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/