Brain endothelium-derived extracellular vesicles containing amyloid-beta induce mitochondrial alterations in neural progenitor cells

Olivia M. Osborne , Jennifer M. Kowalczyk , Kelssey D. Pierre Louis , Manav T. Daftari , Brett M. Colbert , Oandy Naranjo , Silvia Torices , Ibolya E. András , Derek M. Dykxhoorn , Michal Toborek

Extracellular Vesicles and Circulating Nucleic Acids ›› 2022, Vol. 3 ›› Issue (4) : 375 -79.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2022, Vol. 3 ›› Issue (4) :375 -79. DOI: 10.20517/evcna.2022.22
Original Article

Brain endothelium-derived extracellular vesicles containing amyloid-beta induce mitochondrial alterations in neural progenitor cells

Author information +
History +
PDF

Abstract

Aim: Elevated brain deposits of amyloid beta (Aβ40) contribute to neuropathology and cognitive dysfunction in Alzheimer’s disease (AD). However, the role of the blood-brain barrier (BBB) as an interface for the transfer of Aβ40 from the periphery into the brain is not well characterized. In addition, a substantial population of neural progenitor cells (NPCs) resides in close proximity to brain capillaries that form the BBB. The aim of this study is to understand the impact of brain endothelium-derived extracellular vesicles (EV) containing Aβ40 on metabolic functions and differentiation of NPCs.

Methods: Endothelial EVs were derived from an in vitro model of the brain endothelium treated with 100 nM Aβ40 or PBS. We then analyzed the impact of these EVs on mitochondrial morphology and bioenergetic disruption of NPCs. In addition, NPCs were differentiated and neurite development upon exposure to EVs was assessed using the IncuCyte Zoom live cell imaging system.

Results: We demonstrate that physiological concentrations of Aβ40 can be transferred to accumulate in NPCs via endothelial EVs. This transfer results in mitochondrial dysfunction, disrupting crista morphology, metabolic rates, fusion and fission dynamics of NPCs, as well as their neurite development.

Conclusion: Intercellular transfer of Aβ40 is carried out by brain endothelium-derived EVs, which can affect NPC differentiation and induce mitochondrial dysfunction, leading to aberrant neurogenesis. This has pathological implications because NPCs growing into neurons are incorporated into cerebral structures involved in learning and memory, two common phenotypes affected in AD and related dementias.

Keywords

Blood-brain barrier / mitochondrial bioenergetics / extracellular vesicle / neurogenesis / Alzheimer’s disease / Seahorse / neural progenitor cell

Cite this article

Download citation ▾
Olivia M. Osborne, Jennifer M. Kowalczyk, Kelssey D. Pierre Louis, Manav T. Daftari, Brett M. Colbert, Oandy Naranjo, Silvia Torices, Ibolya E. András, Derek M. Dykxhoorn, Michal Toborek. Brain endothelium-derived extracellular vesicles containing amyloid-beta induce mitochondrial alterations in neural progenitor cells. Extracellular Vesicles and Circulating Nucleic Acids, 2022, 3(4): 375-79 DOI:10.20517/evcna.2022.22

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Swerdlow RH.Brain aging, Alzheimer’s disease, and mitochondria.Biochim Biophys Acta2011;1812:1630-9 PMCID:PMC3210037

[2]

Musiek ES.Three dimensions of the amyloid hypothesis: time, space and “wingmen”.Nat Neurosci2015;18:800-6 PMCID:PMC4445458

[3]

Osborne O,Nair M,Toborek M.The paradox of HIV blood-brain barrier penetrance and antiretroviral drug delivery deficiencies.Trends Neurosci2020;43:695-708 PMCID:PMC7483662

[4]

András IE,Huang W.Simvastatin protects against amyloid beta and HIV-1 Tat-induced promoter activities of inflammatory genes in brain endothelial cells.Mol Pharmacol2008;73:1424-33 PMCID:PMC2731660

[5]

Bourassa P,Schneider JA,Calon F.Beta-amyloid pathology in human brain microvessel extracts from the parietal cortex: relation with cerebral amyloid angiopathy and Alzheimer’s disease.Acta Neuropathol2019;137:801-23 PMCID:PMC6483878

[6]

Xu J.The comorbidity of HIV-associated neurocognitive disorders and Alzheimer’s disease: a foreseeable medical challenge in post-HAART era.J Neuroimmune Pharmacol2009;4:200-12 PMCID:PMC2682636

[7]

Soontornniyomkij V,Gouaux B.Cerebral β-amyloid deposition predicts HIV-associated neurocognitive disorders in APOE ε4 carriers.AIDS2012;26:2327-35 PMCID:PMC3576852

[8]

András IE,Huang W,Hennig B.HIV-1-induced amyloid beta accumulation in brain endothelial cells is attenuated by simvastatin.Mol Cell Neurosci2010;43:232-43 PMCID:PMC2818553

[9]

Rajendran L,Zahn TR.Alzheimer’s disease beta-amyloid peptides are released in association with exosomes.Proc Natl Acad Sci USA2006;103:11172-7 PMCID:PMC1544060

[10]

András IE,Contreras MG.Extracellular vesicles of the blood-brain barrier: role in the HIV-1 associated amyloid beta pathology.Mol Cell Neurosci2017;79:12-22 PMCID:PMC5315639

[11]

András IE,Yanick C.Extracellular vesicle-mediated amyloid transfer to neural progenitor cells: implications for RAGE and HIV infection.Mol Brain2020;13:21 PMCID:PMC7027073

[12]

d’Uscio LV,Katusic ZS.Expression and processing of amyloid precursor protein in vascular endothelium.Physiology2017;32:20-32 PMCID:PMC5338593

[13]

Tachida Y,Muto Y.Endothelial expression of human amyloid precursor protein leads to amyloid β in the blood and induces cerebral amyloid angiopathy in knock-in mice.J Biol Chem2022;298:101880 PMCID:PMC9144051

[14]

Zenaro E,Constantin G.The blood-brain barrier in Alzheimer’s disease.Neurobiol Dis2017;107:41-56 PMCID:PMC5600438

[15]

Chen L,Choi YJ,Toborek M.HIV-1 Tat-induced cerebrovascular toxicity is enhanced in mice with amyloid deposits.Neurobiol Aging2012;33:1579-90 PMCID:PMC3206197

[16]

Kalani A,Tyagi N.Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics.Mol Neurobiol2014;49:590-600 PMCID:PMC3951279

[17]

Joshi P,Furlan R,Verderio C.Extracellular vesicles in Alzheimer’s disease: friends or foes?.Int J Mol Sci2015;16:4800-13 PMCID:PMC4394450

[18]

Mathivanan S,Simpson RJ.Exosomes: extracellular organelles important in intercellular communication.J Proteomics2010;73:1907-20

[19]

Théry C,Segura E.Membrane vesicles as conveyors of immune responses.Nat Rev Immunol2009;9:581-93

[20]

Luo X,Sacan A.Differential RNA packaging into small extracellular vesicles by neurons and astrocytes.Cell Commun Signal2021;19:75 PMCID:PMC8272329

[21]

Tian T,Wang H,Xiao Z.Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy.J Cell Biochem2010;111:488-96

[22]

Hornung S,Bitan G.CNS-derived blood exosomes as a promising source of biomarkers: opportunities and challenges.Front Mol Neurosci2020;13:38 PMCID:PMC7096580

[23]

Song Z,Deng W.Brain derived exosomes are a double-edged sword in Alzheimer’s disease.Front Mol Neurosci2020;13:79 PMCID:PMC7274346

[24]

Shen Q,Kokovay E.Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions.Cell Stem Cell2008;3:289-300 PMCID:PMC2747473

[25]

DeRosa BA,Dubey GK.Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells.Neurosci Lett2012;516:9-14 PMCID:PMC4278654

[26]

Paris D,Obregon DF,Mullan M.Pro-inflammatory effect of freshly solubilized β-amyloid peptides in the brain.Prostaglandins Other Lipid Mediat2002;70:1-12

[27]

Kanekiyo T.The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer’s disease.Front Aging Neurosci2014;6:93 PMCID:PMC4033011

[28]

András IE,Toborek M.Lipid rafts and functional caveolae regulate HIV-induced amyloid beta accumulation in brain endothelial cells.Biochem Biophys Res Commun2012;421:177-83 PMCID:PMC3348457

[29]

Lam J,Biete M.A universal approach to analyzing transmission electron microscopy with imageJ.Cells2021;10:2177 PMCID:PMC8465115

[30]

Valente AJ,Robb EL,Stuart JA.A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture.Acta Histochem2017;119:315-26

[31]

Kerr JS,Greig NH.Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms.Trends Neurosci2017;40:151-66 PMCID:PMC5341618

[32]

Ribeiro MF,Rego AC,Solá S.Amyloid β peptide compromises neural stem cell fate by irreversibly disturbing mitochondrial oxidative state and blocking mitochondrial biogenesis and dynamics.Mol Neurobiol2019;56:3922-36

[33]

Donato AJ,Walker AE.Cellular and molecular biology of aging endothelial cells.J Mol Cell Cardiol2015;89:122-35 PMCID:PMC4522407

[34]

Vieira HL,Vercelli A.Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species.Prog Neurobiol2011;93:444-55

[35]

Prozorovski T,Berndt C,Aktas O.Redox-regulated fate of neural stem progenitor cells.Biochim Biophys Acta2015;1850:1543-54

[36]

Batista AF,Forny-Germano L.Interleukin-1β mediates alterations in mitochondrial fusion/fission proteins and memory impairment induced by amyloid-β oligomers.J Neuroinflammation2021;18:54 PMCID:PMC7897381

[37]

Hou Y,Wan R.Permeability transition pore-mediated mitochondrial superoxide flashes mediate an early inhibitory effect of amyloid beta1-42 on neural progenitor cell proliferation.Neurobiol Aging2014;35:975-89 PMCID:PMC3946227

[38]

Shen Q,Jin L.Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells.Science2004;304:1338-40

[39]

Deng W,Gage FH.New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?.Nat Rev Neurosci2010;11:339-50 PMCID:PMC2886712

[40]

Drew LJ,Hen R.Adult neurogenesis in the mammalian hippocampus: why the dentate gyrus?.Learn Mem2013;20:710-29 PMCID:PMC3834622

[41]

Mu Y.Adult hippocampal neurogenesis and its role in Alzheimer’s disease.Mol Neurodegener2011;6:85 PMCID:PMC3261815

[42]

Kim TA,Ge S.The interplay of neurovasculature and adult hippocampal neurogenesis.Neurosci Lett2021;760:136071 PMCID:PMC8683249

[43]

Deane R,Zlokovic BV.RAGE (Yin) versus LRP (Yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood-brain barrier.Stroke2004;35:2628-31

[44]

van der Kant R, Goldstein LS. Cellular functions of the amyloid precursor protein from development to dementia.Dev Cell2015;32:502-15

[45]

Zheng X,Jin M.Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation.Elife2016;5:e13374 PMCID:PMC4963198

[46]

Rybka V,Gavrish AS,Gychka SG.Transmission electron microscopy study of mitochondria in aging brain synapses.Antioxidants2019;8:171 PMCID:PMC6616891

[47]

Andersen JV,Christensen SK,Shabani M.Hippocampal disruptions of synaptic and astrocyte metabolism are primary events of early amyloid pathology in the 5xFAD mouse model of Alzheimer’s disease.Cell Death Dis2021;12:954 PMCID:PMC8520528

[48]

Takemura G,Kashimura T,Okada H.Electron microscopic findings are an important aid for diagnosing mitochondrial cardiomyopathy with mitochondrial DNA mutation 3243A>G.Circ Heart Fail2016;9:e003283

[49]

Sabbah HN.Targeting the mitochondria in heart failure: a translational perspective.JACC Basic Transl Sci2020;5:88-106 PMCID:PMC7000886

[50]

Meshrkey F,Rao RR.Quantitative analysis of mitochondrial morphologies in human induced pluripotent stem cells for Leigh syndrome.Stem Cell Res2021;57:102572

[51]

Reddy PH,Manczak M.Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease.Hum Mol Genet2018;27:2502-16 PMCID:PMC6031001

[52]

Du M,Su W.Mitofusin 2 but not mitofusin 1 mediates Bcl-XL-induced mitochondrial aggregation.J Cell Sci2020;133:jcs245001

[53]

Wang X,Siedlak SL.Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins.Proc Natl Acad Sci USA2008;105:19318-23 PMCID:PMC2614759

[54]

Pernas L.Mito-Morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function.Annu Rev Physiol2016;78:505-31

[55]

Youle RJ.Mitochondrial fission, fusion, and stress.Science2012;337:1062-5 PMCID:PMC4762028

[56]

Valenti D,Marzulli D.Inhibition of Drp1-mediated mitochondrial fission improves mitochondrial dynamics and bioenergetics stimulating neurogenesis in hippocampal progenitor cells from a Down syndrome mouse model.Biochim Biophys Acta Mol Basis Dis2017;1863:3117-27

[57]

Xin Y,Wu W.Mitofusin-2: a new mediator of pathological cell proliferation.Front Cell Dev Biol2021;9:647631 PMCID:PMC8049505

[58]

Frezza C,Martins de Brito O.OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion.Cell2006;126:177-89

[59]

Filadi R,Pizzo P.Mitofusin 2: from functions to disease.Cell Death Dis2018;9:330 PMCID:PMC5832425

[60]

Hu C,Huang X.OPA1 and MICOS Regulate mitochondrial crista dynamics and formation.Cell Death Dis2020;11:940 PMCID:PMC7603527

[61]

Cozzolino M,Ferri A.Apoptosome inactivation rescues proneural and neural cells from neurodegeneration.Cell Death Differ2004;11:1179-91

[62]

Wang S,Deng X,Xu K.Advances in characterization of SIRT3 deacetylation targets in mitochondrial function.Biochimie2020;179:1-13

[63]

Palomer X,Pizarro-Delgado J.SIRT3-mediated inhibition of FOS through histone H3 deacetylation prevents cardiac fibrosis and inflammation.Signal Transduct Target Ther2020;5:14 PMCID:PMC7046732

[64]

Dikalova AE,Xiao L.Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress.Circ Res2020;126:439-52 PMCID:PMC7035170

[65]

Guo X,Li J,Su H.SIRT3 ablation deteriorates obesity-related cardiac remodeling by modulating ROS-NF-κB-MCP-1 signaling pathway.J Cardiovasc Pharmacol2020;76:296-304

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/