Identification of important extracellular vesicle RNA molecules related to sperm motility and prostate cancer

Yu Zhang , Ning Ding , Shenmin Xie , Yaqun Ding , Mengna Huang , Xiangdong Ding , Li Jiang

Extracellular Vesicles and Circulating Nucleic Acids ›› 2021, Vol. 2 ›› Issue (2) : 104 -26.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2021, Vol. 2 ›› Issue (2) :104 -26. DOI: 10.20517/evcna.2021.02
Original Article

Identification of important extracellular vesicle RNA molecules related to sperm motility and prostate cancer

Author information +
History +
PDF

Abstract

Aim: Many male diseases are associated with sperm quality, such as prostate cancer (PCa), oligospermia, and asthenospermia. Seminal plasma extracellular vesicles (SPEVs) play important roles in sperm function. In this study, we explored the specific RNA molecules in SPEVs that play an important role in sperm motility and found promising biomarkers of PCa in SPEVs.

Methods: Pigs have become an ideal model for human biomedical research. In this study, the whole transcriptome profiles of SPEVs of boars with high or low sperm motility were studied for the first time. Important long non-coding RNAs, microRNAs, and genes were identified through differentially expressed analysis and weighted correlation network analysis (WGCNA). In addition, we established a diagnosis model of PCa by differentially expressed miRNAs homologous with human.

Results: In total, 27 differentially expressed miRNAs, 106 differentially expressed lncRNAs, and 503 differentially expressed genes were detected between the groups. The results of WGCNA show one module was significantly associated with sperm motility (r = 0.98, FDR = 2 × 10-6). The value of highly homologous miRNAs for the diagnosis of PCa was assessed and the combination of hsa-miR-27a-3p, hsa-miR-27b-3p, hsa-miR-155-5p, and hsa-miR-378a-3p exhibited the highest sensitivity (AUC = 0.914). Interestingly, mRNA expression of SPEVs was mainly enriched in resting memory CD4 T cells and monocytes, and 33 cell marker genes of monocytes overlapped with the differentially expressed genes.

Conclusion: These data demonstrate that SPEVs of individuals with high and low sperm motility exhibit distinct transcriptional profiles, which provide valuable information for further research on diagnosis and molecular mechanism of diseases.

Keywords

Seminal plasma extracellular vesicles / transcriptome / sperm motility / prostate cancer / immune cells

Cite this article

Download citation ▾
Yu Zhang, Ning Ding, Shenmin Xie, Yaqun Ding, Mengna Huang, Xiangdong Ding, Li Jiang. Identification of important extracellular vesicle RNA molecules related to sperm motility and prostate cancer. Extracellular Vesicles and Circulating Nucleic Acids, 2021, 2(2): 104-26 DOI:10.20517/evcna.2021.02

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Eisenberg ML,Herder D,Lipshultz LI.Increased risk of cancer among azoospermic men.Fertil Steril2013;100:681-5 PMCID:PMC3759541

[2]

Husby A,Melbye M.Vasectomy and Prostate Cancer Risk: A 38-Year Nationwide Cohort Study.J Natl Cancer Inst2020;112:71-7

[3]

Swindle MM,Herron AJ,Frazier KS.Swine as models in biomedical research and toxicology testing.Vet Pathol2012;49:344-56

[4]

Schachtschneider KM,Park C,Groenen MA.Adult porcine genome-wide DNA methylation patterns support pigs as a biomedical model.BMC Genomics2015;16:743 PMCID:PMC4594891

[5]

Helke KL,Sargeant AM.Pigs in Toxicology: Breed Differences in Metabolism and Background Findings.Toxicol Pathol2016;44:575-90

[6]

Kalluri R.function, and biomedical applications of exosomes.Science2020;367:eaau6977 PMCID:PMC7717626

[7]

Mead B.Extracellular vesicle therapy for retinal diseases.Prog Retin Eye Res2020;79:100849

[8]

Margolis L.The biology of extracellular vesicles: The known unknowns.PLoS Biol2019;17:e3000363 PMCID:PMC6667152

[9]

Sandfeld-Paulsen B,Bæk R.Exosomal Proteins as Diagnostic Biomarkers in Lung Cancer.J Thorac Oncol2016;11:1701-10

[10]

Rodríguez M,Hessvik NP.Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes.Mol Cancer2017;16:156 PMCID:PMC5629793

[11]

Yu S,Liao Z.Plasma extracellular vesicle long RNA profiling identifies a diagnostic signature for the detection of pancreatic ductal adenocarcinoma.Gut2020;69:540-50

[12]

Sullivan R.Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology.Reproduction2013;146:R21-35

[13]

Candenas L.Exosome Composition and Seminal Plasma Proteome: A Promising Source of Biomarkers of Male Infertility.Int J Mol Sci2020;21:7022 PMCID:PMC7583765

[14]

Drabovich AP,Jarvi K.Seminal plasma as a diagnostic fluid for male reproductive system disorders.Nat Rev Urol2014;11:278-88

[15]

Machtinger R,Baccarelli AA.Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation.Hum Reprod Update2016;22:182-93 PMCID:PMC4755440

[16]

Baskaran S,Agarwal A.Exosomes of male reproduction. Elsevier; 2020. pp. 149-63.

[17]

Vojtech L,Hughes S.Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions.Nucleic Acids Res2014;42:7290-304 PMCID:PMC4066774

[18]

Aalberts M,Stoorvogel W.Prostasomes: extracellular vesicles from the prostate.Reproduction2014;147:R1-14

[19]

Du J,Wang Y.Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane.Oncotarget2016;7:58832-47 PMCID:PMC5312279

[20]

Kalogianni DP,Kyriakou IK.Advances in microRNA analysis.Anal Bioanal Chem2018;410:695-713

[21]

Kotaja N.MicroRNAs and spermatogenesis.Fertil Steril2014;101:1552-62

[22]

Chen X,Guo J,Zeng W.The roles of microRNAs in regulation of mammalian spermatogenesis.J Anim Sci Biotechnol2017;8:35 PMCID:PMC5410700

[23]

Salas-Huetos A,Aston KI,Jenkins TG.The role of miRNAs in male human reproduction: a systematic review.Andrology2020;8:7-26

[24]

Abu-Halima M,Hart M.Altered micro-ribonucleic acid expression profiles of extracellular microvesicles in the seminal plasma of patients with oligoasthenozoospermia.Fertil Steril2016;106:1061-1069.e3

[25]

Barceló M,Bassas L.Exosomal microRNAs in seminal plasma are markers of the origin of azoospermia and can predict the presence of sperm in testicular tissue.Hum Reprod2018;33:1087-98 PMCID:PMC5972609

[26]

Fujita K.Urinary biomarkers of prostate cancer.Int J Urol2018;25:770-9

[27]

Wang J,Beretov J,Graham P.Exosomal microRNAs as liquid biopsy biomarkers in prostate cancer.Crit Rev Oncol Hematol2020;145:102860

[28]

Bryzgunova OE,Skvortsova TE.Comparative Study of Extracellular Vesicles from the Urine of Healthy Individuals and Prostate Cancer Patients.PLoS One2016;11:e0157566 PMCID:PMC4909321

[29]

Foj L,Serra M.Exosomal and Non-Exosomal Urinary miRNAs in Prostate Cancer Detection and Prognosis.Prostate2017;77:573-83

[30]

Li Z,Wang J.Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients.Onco Targets Ther2016;9:139-48 PMCID:PMC4706124

[31]

Barceló M,Bassas L,Larriba S.Semen miRNAs Contained in Exosomes as Non-Invasive Biomarkers for Prostate Cancer Diagnosis.Sci Rep2019;9:13772 PMCID:PMC6760223

[32]

Li P,Lee SH,Gao Z.Progress in Exosome Isolation Techniques.Theranostics2017;7:789-804 PMCID:PMC5327650

[33]

Quast C,Yilmaz P.The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.Nucleic Acids Res2013;41:D590-6 PMCID:PMC3531112

[34]

Chan PP.GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes.Nucleic Acids Res2016;44:D184-9 PMCID:PMC4702915

[35]

Kalvari I,Quinones-Olvera N.Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families.Nucleic Acids Res2018;46:D335-42 PMCID:PMC5753348

[36]

Bao W,Kohany O.Repbase Update, a database of repetitive elements in eukaryotic genomes.Mob DNA2015;6:11 PMCID:PMC4455052

[37]

An J,Lehman ML.miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data.Nucleic Acids Res2013;41:727-37 PMCID:PMC3553977

[38]

Kim D,Salzberg SL.HISAT: a fast spliced aligner with low memory requirements.Nat Methods2015;12:357-60 PMCID:PMC4655817

[39]

Pertea M,Pertea GM,Salzberg SL.Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown.Nat Protoc2016;11:1650-67 PMCID:PMC5032908

[40]

Pertea G.GFF Utilities: GffRead and GffCompare.F1000Res2020;9:304 PMCID:PMC7222033

[41]

Lv J,Liu H.Identification and characterization of long non-coding RNAs related to mouse embryonic brain development from available transcriptomic data.PLoS One2013;8:e71152 PMCID:PMC3743905

[42]

Kelley D.Transposable elements reveal a stem cell-specific class of long noncoding RNAs.Genome Biol2012;13:R107 PMCID:PMC3580499

[43]

Sun L,Bu D.Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts.Nucleic Acids Res2013;41:e166 PMCID:PMC3783192

[44]

Kong L,Ye ZQ.CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine.Nucleic Acids Res2007;35:W345-9 PMCID:PMC1933232

[45]

Finn RD,Clements J.Pfam: the protein families database.Nucleic Acids Res2014;42:D222-30

[46]

Wang L,Dasari S,Kocher JP.CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model.Nucleic Acids Res2013;41:e74 PMCID:PMC3616698

[47]

Love MI,Anders S.Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol2014;15:550 PMCID:PMC4302049

[48]

Yan Z,Freebern E.Integrating RNA-Seq with GWAS reveals novel insights into the molecular mechanism underpinning ketosis in cattle.BMC Genomics2020;21:489 PMCID:PMC7367229

[49]

Wang M,Pu L.LncRNAs related key pathways and genes in ischemic stroke by weighted gene co-expression network analysis (WGCNA).Genomics2020;112:2302-8

[50]

Xie C,Huang J.KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases.Nucleic Acids Res2011;39:W316-22 PMCID:PMC3125809

[51]

Krüger J.RNAhybrid: microRNA target prediction easy, fast and flexible.Nucleic Acids Res2006;34:W451-4 PMCID:PMC1538877

[52]

Li X,Han Y.Comprehensive analysis of dysregulated exosomal long non-coding RNA networks associated with arteriovenous malformations.Gene2020;738:144482

[53]

Shannon P,Ozier O.Cytoscape: a software environment for integrated models of biomolecular interaction networks.Genome Res2003;13:2498-504 PMCID:PMC403769

[54]

Newman AM,Liu CL.Determining cell type abundance and expression from bulk tissues with digital cytometry.Nat Biotechnol2019;37:773-82 PMCID:PMC6610714

[55]

Carlini E,Cosmi EV.Fusion of sperm with prostasomes: effects on membrane fluidity.Arch Biochem Biophys1997;343:6-12

[56]

Arienti G,Palmerini CA.Fusion of human sperm to prostasomes at acidic pH.J Membr Biol1997;155:89-94

[57]

Arienti G.The motility of human spermatozoa as influenced by prostasomes at various pH levels.Biology of the Cell1999;91:51-4

[58]

Chen T,Ye RS.Exploration of microRNAs in porcine milk exosomes.BMC Genomics2014;15:100 PMCID:PMC4008308

[59]

van Herwijnen MJC,Snoek BL.Abundantly Present miRNAs in Milk-Derived Extracellular Vesicles Are Conserved Between Mammals.Front Nutr2018;5:81 PMCID:PMC6153340

[60]

Cai M,Jia X.Genome-wide microRNA profiling of bovine milk-derived exosomes infected with Staphylococcus aureus.Cell Stress Chaperones2018;23:663-72 PMCID:PMC6045547

[61]

Simpson MR,Johansen J.Human Breast Milk miRNA, Maternal Probiotic Supplementation and Atopic Dermatitis in Offspring.PLoS One2015;10:e0143496 PMCID:PMC4682386

[62]

Nadiminty N,Lou W.MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth.PLoS One2012;7:e32832 PMCID:PMC3316551

[63]

Zhou R,Du G.Down-regulated let-7b-5p represses glycolysis metabolism by targeting AURKB in asthenozoospermia.Gene2018;663:83-7

[64]

Zhang J,Xiong Z,Liao Q.High-throughput sequencing reveals biofluid exosomal miRNAs associated with immunity in pigs.Biosci Biotechnol Biochem2020;84:53-62

[65]

Zeng B,Luo JY.Biological Characteristics and Roles of Noncoding RNAs in Milk-Derived Extracellular Vesicles.Adv Nutr2020:nmaa124

[66]

Hessvik NP,Brech A,Llorente A.Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells.Biochim Biophys Acta2012;1819:1154-63

[67]

Lodes MJ,Suciu D,Kumar A.Detection of cancer with serum miRNAs on an oligonucleotide microarray.PLoS One2009;4:e6229 PMCID:PMC2704963

[68]

Moltzahn F,Baehner L.Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients.Cancer Res2011;71:550-60 PMCID:PMC3022112

[69]

McKenzie AJ,Hong NH.KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes.Cell Rep2016;15:978-87 PMCID:PMC4857875

[70]

Wei D,Gao Y.RAB31 marks and controls an ESCRT-independent exosome pathway.Cell Res2021;31:157-77

[71]

Kabekkodu SP,Varghese VK,Chakrabarty S.Clustered miRNAs and their role in biological functions and diseases.Biol Rev Camb Philos Soc2018;93:1955-86

[72]

Chhabra R,Saini N.Cooperative and individualistic functions of the microRNAs in the miR-23a~27a~24-2 cluster and its implication in human diseases.Mol Cancer2010;9:232 PMCID:PMC2940846

[73]

Eikmans M,Blijleven L.Optimization of microRNA Acquirement from Seminal Plasma and Identification of Diminished Seminal microRNA-34b as Indicator of Low Semen Concentration.Int J Mol Sci2020;21:4089 PMCID:PMC7312420

[74]

Rebello RJ,Hannan RD.Therapeutic Approaches Targeting MYC-Driven Prostate Cancer.Genes (Basel)2017;8:71 PMCID:PMC5333060

[75]

Ellwood-yen K,Wongvipat J.Myc-driven murine prostate cancer shares molecular features with human prostate tumors.Cancer Cell2005;8:485

[76]

Tirado-Hurtado I,Pinto JA.DNA Damage Inducible Transcript 4 Gene: The Switch of the Metabolism as Potential Target in Cancer.Front Oncol2018;8:106 PMCID:PMC5906527

[77]

Zhou Y,Guo Z,Evers BM.Nuclear factor of activated T-cell c3 inhibition of mammalian target of rapamycin signaling through induction of regulated in development and DNA damage response 1 in human intestinal cells.Mol Biol Cell2012;23:2963-72 PMCID:PMC3408422

[78]

Shang Y,Jia P.Autophagy regulates spermatid differentiation via degradation of PDLIM1.Autophagy2016;12:1575-92

[79]

Huang Q,Zhang S.Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice.Autophagy2020;1-15

[80]

Zhang J,Liu Y.Leucine mediates autophagosome-lysosome fusion and improves sperm motility by activating the PI3K/Akt pathway.Oncotarget2017;8:111807-18 PMCID:PMC5762361

[81]

Liu S,Geng Y.Rapamycin inhibits spermatogenesis by changing the autophagy status through suppressing mechanistic target of rapamycin-p70S6 kinase in male rats.Mol Med Rep2017;16:4029-37 PMCID:PMC5646984

[82]

Tay Y,Pandolfi PP.The multilayered complexity of ceRNA crosstalk and competition.Nature2014;505:344-52 PMCID:PMC4113481

[83]

Jodar M.Sperm and seminal plasma RNAs: what roles do they play beyond fertilization?.Reproduction2019;158:R113-23

[84]

Iacona JR.miR-146a-5p: Expression, regulation, and functions in cancer.Wiley Interdiscip Rev RNA2019;10:e1533

[85]

Fang L,Liu S.Comprehensive analyses of 723 transcriptomes enhance genetic and biological interpretations for complex traits in cattle.Genome Res2020;30:790-801 PMCID:PMC7263193

[86]

Xiao C.MicroRNA control in the immune system: basic principles.Cell2009;136:26-36

[87]

Kroesen BJ,Smigielska-Czepiel K.Immuno-miRs: critical regulators of T-cell development, function and ageing.Immunology2015;144:1-10 PMCID:PMC4264905

[88]

Rodriguez A,Clare S.Requirement of bic/microRNA-155 for normal immune function.Science2007;316:608-11 PMCID:PMC2610435

[89]

Thai TH,Casola S.Regulation of the germinal center response by microRNA-155.Science2007;316:604-8

[90]

Vigorito E,Abreu-Goodger C.microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells.Immunity2007;27:847-59 PMCID:PMC4135426

[91]

Rusca N,Montagner S.MiR-146a and NF-κB1 regulate mast cell survival and T lymphocyte differentiation.Mol Cell Biol2012;32:4432-44 PMCID:PMC3486148

[92]

Yang L,Yu Y.miR-146a controls the resolution of T cell responses in mice.J Exp Med2012;209:1655-70 PMCID:PMC3428948

[93]

Lu LF,Chaudhry A.Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses.Cell2010;142:914-29 PMCID:PMC3049116

[94]

Wu T,Araki K.Temporal expression of microRNA cluster miR-17-92 regulates effector and memory CD8+ T-cell differentiation.Proc Natl Acad Sci U S A2012;109:9965-70 PMCID:PMC3382487

[95]

Kouchkovsky D, Esensten JH, Rosenthal WL, Morar MM, Bluestone JA, Jeker LT. microRNA-17-92 regulates IL-10 production by regulatory T cells and control of experimental autoimmune encephalomyelitis.J Immunol2013;191:1594-605 PMCID:PMC4160833

[96]

Ventura A,Winslow MM.Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters.Cell2008;132:875-86 PMCID:PMC2323338

[97]

Xiao C,Calado DP.Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes.Nat Immunol2008;9:405-14 PMCID:PMC2533767

[98]

Kurkewich JL,Nguyen T.The mirn23a microRNA cluster antagonizes B cell development.J Leukoc Biol2016;100:665-77

[99]

Li Y,Yu S.Extracellular Vesicles Long RNA Sequencing Reveals Abundant mRNA, circRNA, and lncRNA in Human Blood as Potential Biomarkers for Cancer Diagnosis.Clin Chem2019;65:798-808

AI Summary AI Mindmap
PDF

236

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/