Isolation and characterization of extracellular vesicles in saliva of children with asthma

Nicole Comfort , Tessa R. Bloomquist , Alex P. Shephard , Carter R. Petty , Amparito Cunningham , Marissa Hauptman , Wanda Phipatanakul , Andrea Baccarelli

Extracellular Vesicles and Circulating Nucleic Acids ›› 2021, Vol. 2 ›› Issue (1) : 29 -48.

PDF
Extracellular Vesicles and Circulating Nucleic Acids ›› 2021, Vol. 2 ›› Issue (1) :29 -48. DOI: 10.20517/evcna.2020.09
Original Article

Isolation and characterization of extracellular vesicles in saliva of children with asthma

Author information +
History +
PDF

Abstract

Aim: To confirm the presence of extracellular vesicles (EVs) in cell-free saliva (CFS) of children with asthma and describe the isolated EV population.

Methods: A pooled sample of CFS EVs isolated from 180 participants using ExoQuick-TC was examined in downstream analyses. Transmission electron microscopy (TEM) was used to confirm the presence of EVs. Nanoparticle tracking analysis (NTA) and single particle interferometric reflectance imaging sensing (SP-IRIS) with fluorescence were used for sizing, counting, and phenotyping of EVs. Capillary immunoassays were used for protein quantitation.

Results: TEM confirmed the presence of EVs of diverse sizes, indicating the prep contained a heterogeneous population of EVs. Capillary immunoassays confirmed the presence of EV-associated proteins (CD9, CD63, CD81, ICAM-1, and ANXA5) and indicated limited cellular contamination. As others have also reported, there were discrepancies in the EV sizing and enumeration across platforms. Fluorescent NTA detected particles with a mode diameter of ~90 nm, whereas SP-IRIS reported sizes of ~55-60 nm that more closely approximated the TEM results. Consistent with protein immunoassay results, SP-IRIS with fluorescence showed that the majority of these EVs were CD9- and CD63-positive, with little expression of CD81.

Conclusion: EVs from CFS can be isolated using a high-throughput method that can be scaled to large epidemiological studies. To our knowledge, we are the first to characterize CFS EVs from patients with asthma. The use of CFS EVs as potential novel biomarkers in asthma warrants further investigation and opens a new avenue of research for future studies.

Keywords

Extracellular vesicles / exosome / TEM / NTA / SP-IRIS / saliva / asthma / biomarker

Cite this article

Download citation ▾
Nicole Comfort, Tessa R. Bloomquist, Alex P. Shephard, Carter R. Petty, Amparito Cunningham, Marissa Hauptman, Wanda Phipatanakul, Andrea Baccarelli. Isolation and characterization of extracellular vesicles in saliva of children with asthma. Extracellular Vesicles and Circulating Nucleic Acids, 2021, 2(1): 29-48 DOI:10.20517/evcna.2020.09

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lancet. Controlling asthma.Lancet 2014;383:1521

[2]

Zar HJ.The global burden of respiratory disease-impact on child health.Pediatr Pulmonol 2014;49:430-4

[3]

Ramratnam SK,Guilbert TW.Severe Asthma in Children.J Allergy Clin Immunol Pract 2017;5:889-98

[4]

Dharmage SC,Custovic A.Epidemiology of Asthma in Children and Adults.Front Pediatr 2019;7:246 PMCID:PMC6591438

[5]

Wenzel SE.Asthma phenotypes: the evolution from clinical to molecular approaches.Nat Med 2012;18:716-25

[6]

Wu G,Zhang R.Altered microRNA Expression Profiles of Extracellular Vesicles in Nasal Mucus From Patients With Allergic Rhinitis.Allergy Asthma Immunol Res 2015;7:449-57 PMCID:PMC4509657

[7]

Levänen B,Torregrosa Paredes P.Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients.J Allergy Clin Immunol 2013;131:894-903 PMCID:PMC4013392

[8]

Mortaz E,Varahram M.Exosomes in Severe Asthma: Update in Their Roles and Potential in Therapy.Biomed Res Int 2018;2018:2862187 PMCID:PMC5964496

[9]

Sastre B,Rodrigo-Muñoz JM.Novel Modulators of Asthma and Allergy: Exosomes and MicroRNAs.Front Immunol 2017;8:826 PMCID:PMC5519536

[10]

Palanisamy V,Deshpande A,Gimzewski J.Nanostructural and transcriptomic analyses of human saliva derived exosomes.PLoS One 2010;5:e8577 PMCID:PMC2797607

[11]

Sharma S,Palanisamy V.Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy.ACS Nano 2010;4:1921-6 PMCID:PMC2866049

[12]

Lässer C,Ekström K.Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages.J Transl Med 2011;9:9 PMCID:PMC3033821

[13]

Wong DT.Salivary Diagnostics: Amazing as it might seem, doctors can detect and monitor diseases using molecules found in a sample of spit.Am Sci 2008;96:37-43 PMCID:PMC2741028

[14]

Kaczor-Urbanowicz KE,Aro K,Garcia-Godoy F.Saliva diagnostics - Current views and directions.Exp Biol Med (Maywood) 2017;242:459-72 PMCID:PMC5367650

[15]

Hyyppä T.Studies on immunologic and inflammatory factors in the saliva and gingiva in patients with asthma.Journal of Clinical Periodontology1981;8:500-7.

[16]

Siegler DI.Serum and parotid salivary IgA in chronic bronchitis and asthma.Thorax 1974;29:313-6 PMCID:PMC470151

[17]

Hyyppa T.Salivary immunoglobulins in children with asthma.J Periodontal Res 1980;15:227-31

[18]

Brasher GW.Salivary IgA children with atopic diseases.Ann Allergy1971;29:422-7

[19]

Butz A,Bollinger ME.Salivary cotinine measurement for all children with persistent asthma: spit matters.Ann Allergy Asthma Immunol 2016;116:463-5 PMCID:PMC4860091

[20]

Negretti F.Remarkable increases of salivary IgE levels in allergic syndromes.Int Arch Allergy Appl Immunol 1990;92:103-4

[21]

Little FF,Wexler PJ.Salivary inflammatory mediator profiling and correlation to clinical disease markers in asthma.PLoS One 2014;9:e84449 PMCID:PMC3883659

[22]

Phipatanakul W,Coull BA.The School Inner-City Asthma Intervention Study: Design, rationale, methods, and lessons learned.Contemp Clin Trials 2017;60:14-23 PMCID:PMC5557648

[23]

Zlotogorski-Hurvitz A,Chaushu G.Human saliva-derived exosomes: comparing methods of isolation.J Histochem Cytochem 2015;63:181-9 PMCID:PMC4340734

[24]

Comfort N,Bloomquist TR,Ferrante AW. Novel nanoparticle tracking analysis technology and method for extracellular vesicle quantification and size determination. J Vis Exp. Forthcoming 2021.

[25]

Gardiner C,Dragovic RA,Sargent IL.Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis.J Extracell Vesicles 2013;2:19671 PMCID:PMC3760643

[26]

Core TeamR. R Foundation for Statistical Computing. (2018). Available from: https://www.r-project.org/index.html [Last accessed on 18 Mar 2021]

[27]

Harris VM.Protein Detection by Simple Western™ Analysis. In: Kurien BT, Scofield RH, editors. Western Blotting. New York: Springer; 2015. pp. 465-8.

[28]

Chen JQ,Herrmann MA.Absolute quantitation of endogenous proteins with precision and accuracy using a capillary Western system.Anal Biochem 2013;442:97-103 PMCID:PMC3805113

[29]

Lötvall J,Hochberg F.Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles.J Extracell Vesicles 2014;3:26913 PMCID:PMC4275645

[30]

Aqrawi LA,Guerreiro EM.Proteomic and histopathological characterisation of sicca subjects and primary Sjögren's syndrome patients reveals promising tear, saliva and extracellular vesicle disease biomarkers.Arthritis Res Ther 2019;21:181 PMCID:PMC6670195

[31]

Nonaka T.Saliva-Exosomics in Cancer: Molecular Characterization of Cancer-Derived Exosomes in Saliva. Peptidomics of Cancer-Derived Enzyme Products. Elsevier; 2017. pp. 125-51. PMCID:PMC6167313

[32]

Wexler PJ,Helmerhorst EJ,Hayman RB.Saliva Diagnostics in Asthma.Proceedings of the American Thoracic Society2009;6

[33]

Colombo M,Théry C.Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.Annu Rev Cell Dev Biol 2014;30:255-89

[34]

Szatanek R,Zimoch J,Siedlar M.The Methods of Choice for Extracellular Vesicles (EVs) Characterization.Int J Mol Sci 2017;18:1153 PMCID:PMC5485977

[35]

Niel G, D’Angelo G, & Raposo G. Shedding light on the cell biology of extracellular vesicles.Nat Rev Mol Cell Biol 2018;19:213-28

[36]

Théry C,Aikawa E.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.J Extracell Vesicles 2018;7:1535750 PMCID:PMC6322352

[37]

van der Pol E,Grootemaat AE.Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing.J Thromb Haemost 2014;12:1182-92

[38]

der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes.J Thromb Haemost 2010;8:2596-607

[39]

Bachurski D,Nguyen PH.Extracellular vesicle measurements with nanoparticle tracking analysis - An accuracy and repeatability comparison between NanoSight NS300 and ZetaView.J Extracell Vesicles 2019;8:1596016 PMCID:PMC6450530

[40]

Vogel R,Muzard J.Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge?.J Extracell Vesicles 2021;10:e12052 PMCID:PMC7804049

[41]

Skliar M,Belnap DM.Membrane proteins significantly restrict exosome mobility.Biochem Biophys Res Commun 2018;501:1055-9

[42]

Goetzl EJ,Peltz CB.Traumatic brain injury increases plasma astrocyte-derived exosome levels of neurotoxic complement proteins.FASEB J 2020;34:3359-66 PMCID:PMC7459190

[43]

Abner EL,Jicha GA.Endothelial-derived plasma exosome proteins in Alzheimer's disease angiopathy.FASEB J 2020;34:5967-74 PMCID:PMC7233139

[44]

Daaboul GG,Benussi L.Digital Detection of Exosomes by Interferometric Imaging.Sci Rep 2016;6:37246 PMCID:PMC5112555

[45]

Helwa I,Drewry MD.A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents.PLoS One 2017;12:e0170628 PMCID:PMC5256994

[46]

Erdbrügger U.Analytical challenges of extracellular vesicle detection: A comparison of different techniques.Cytometry A 2016;89:123-34

[47]

Azmeh R,Agana MG.Update in Pediatric Asthma: Selected Issues.Dis Mon 2020;66:100886

[48]

Gemoll T,Röder C.Protein Profiling of Serum Extracellular Vesicles Reveals Qualitative and Quantitative Differences After Differential Ultracentrifugation and ExoQuickTM Isolation.J Clin Med 2020;9:1429 PMCID:PMC7290673

[49]

Jeyaram A.Preservation and Storage Stability of Extracellular Vesicles for Therapeutic Applications.AAPS J 2017;20:1 PMCID:PMC6582961

[50]

Yuana Y,Grootemaat AE.Handling and storage of human body fluids for analysis of extracellular vesicles.J Extracell Vesicles 2015;4:29260 PMCID:PMC4643195

[51]

Varga Z,Pálmai M.Hollow organosilica beads as reference particles for optical detection of extracellular vesicles.J Thromb Haemost 2018:1646-55

AI Summary AI Mindmap
PDF

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/