Advancements in remote sensing techniques for earthquake engineering: A review

Chinmayi H.K , K. Colton Flynn , Amanda J. Ashworth

Earthquake Research Advances ›› 2025, Vol. 5 ›› Issue (3) : 110 -123.

PDF
Earthquake Research Advances ›› 2025, Vol. 5 ›› Issue (3) :110 -123. DOI: 10.1016/j.eqrea.2024.100352
research-article

Advancements in remote sensing techniques for earthquake engineering: A review

Author information +
History +
PDF

Abstract

Remote sensing technologies play a vital role in our understanding of earthquakes and their impact on the Earth's surface. These technologies, including satellite imagery, aerial surveys, and advanced sensors, contribute significantly to our understanding of the complex nature of earthquakes. This review highlights the advancements in the integration of remote sensing technologies into earthquake studies. The combined use of satellite imagery and aerial photography in conjunction with geographic information systems (GIS) has been instrumental in showcasing the significance of fusing various types of satеllitе data sourcеs for comprеhеnsivе еarthquakе damagе assеssmеnts. However, remote sensing encounters challenges due to limited pre-event imagery and restricted post-earthquake site access. Furthеrmorе, thе application of dееp-lеarning mеthods in assеssing еarthquakе-damagеd buildings dеmonstratеs potеntial for furthеr progrеss in this fiеld. Overall, the utilization of remote sensing technologies has greatly enhanced our comprehension of earthquakes and their effects on the Earth's surface. The fusion of remote sensing technology with advanced data analysis methods holds tremendous potential for driving progress in earthquake studies and damage assessment.

Keywords

Remote sensing / Earthquake engineering / Satellite imagery / Machine learning / dееp-lеarning mеthods

Cite this article

Download citation ▾
Chinmayi H.K, K. Colton Flynn, Amanda J. Ashworth. Advancements in remote sensing techniques for earthquake engineering: A review. Earthquake Research Advances, 2025, 5(3): 110-123 DOI:10.1016/j.eqrea.2024.100352

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Chinmayi H.K: Writing - original draft, Methodology, Conceptualization. K. Colton Flynn: Writing - review & editing, Supervision. Amanda J. Ashworth: Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author agreement and acknowledgement

All authors agree for this publication. This research was funded through an appointment with the Agricultural Research Service, managed by the Oak Ridge Institute for Science and Education. The USDA is an equal opportunity provider and employer. We would like to thank Arun K. Saraf and Sabrina N. Martinez for providing permission to utilize their figures to further enhance our review.

References

[1]

Abdalzaher M.S., Moustafa S.S.R., Yassien M., 2024. Development of smoothed seismicity models for seismic hazard assessment in the red sea region. Natural Hazards. https://doi.org/10.1007/s11069-024-06695-x.

[2]

Abdalzaher M.S., El-Sayed H., Fouda M.M., 2022. Employing remote sensing, data communication networks, AI, and optimization methodologies in seismology. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15, 9417-9438. https://doi.org/10.1109/jstars.2022.3216998.

[3]

Akhmadiya A., Moldamurat K., Nabiyev N., Kismanova A., 2021. Determination of the earthquake epicenter from line-of-sight displacement images obtained by sentinel1a/b radar data using the gmtsar software package. https://doi.org/10.20944/preprints202101.0312.v1.

[4]

Alebele Y., Zhang X., Wang W., Yang G., Yao X., Zheng H., Zhu Y., et al., 2020. Estimation of canopy biomass components in paddy rice from combined optical and SAR data using multi-target gaussian regressor stacking. Remote Sensing 12 (16), 2564. https://doi.org/10.3390/rs12162564.

[5]

An L., Zhang J., 2022. Impact of urbanization on seismic risk: a study based on remote sensing data. Sustainability 14 (10), 6132. https://doi.org/10.3390/su14106132.

[6]

Anniballe R., Bignami C., Chini M., Pierdicca N., Stramondo S., 2014. Detecting sparse earthquake damages in high density urban settlements by VHR SAR data. SPIE Proceedings. https://doi.org/10.1117/12.2068738.

[7]

Bamler R., Hartl P., 1998. Synthetic aperture radar interferometry. Inverse Problems 14 (4), R1-R54. https://doi.org/10.1088/0266-5611/14/4/001.

[8]

Barrile V., Fotia A., Bilotta G., Modafferi A., 2020. Road infrastructure monitoring: an experimental geomatic integrated system. Computational Science and Its Applications- ICCSA 634-648. https://doi.org/10.1007/978-3-030-58811-3_46,2020.

[9]

Bazanowski M., Szostak-Chrzanowski A., Chrzanowski A., 2019. Determination of GPS session duration in ground deformation surveys in mining areas. Sustainability 11 (21), 6127. https://doi.org/10.3390/su11216127.

[10]

Benediktsson J.A., Wu Z., 2021. Distributed computing for remotely sensed data processing[scanning the section]. Proceedings of the IEEE 109 (8), 1278-1281. https://doi.org/10.1109/jproc.2021.3094335.

[11]

Bialas J., Oommen T., Rebbapragada U., Levin E., 2016. Object-based classification of earthquake damage from high-resolution optical imagery using machine learning. Journal of Applied Remote Sensing 10 (3), 036025. https://doi.org/10.1117/1.jrs.10.036025.

[12]

Bitelli G., Romano C., Luca G., Alessandro M., 2004. Remote sensing imagery for damage assessment of buildings after destructive seismic events. https://doi.org/10.2495/RISK040661.

[13]

Chen J., Tang H., Ge J., Pan Y., 2022. Rapid assessment of building damage using multi-source data: a case study of April 2015 Nepal earthquake. Remote Sensing 14 (6), 1358. https://doi.org/10.3390/rs14061358.

[14]

Chiroiu L., 2005. Damage assessment of the 2003 Bam, Iran, earthquake using ikonos imagery. Earthquake Spectra 21 (1_suppl), 219-224. https://doi.org/10.1193/1.2119227.

[15]

Cooner A.J., Shao Y., Campbell J.B., 2016. Detection of urban damage using remote sensing and machine learning algorithms: revisiting the 2010 Haiti earthquake. Remote Sensing 8 (10), 868. https://doi.org/10.3390/rs8100868.

[16]

Costanzo A., Montuori A., Silva J.P., Silvestri M., Musacchio M., Buongiorno M.F., Stramondo S., 2015. Airborne lidar and hyperspectral data to support the seismic vulnerability assessment of urban areas. https://doi.org/10.3390/ecrs-1-f005.

[17]

Costanzo A., Montuori A., Silva J.P., Silvestri M., Musacchio M., Doumaz F., Stramondo S., et al., 2016. The combined use of airborne remote sensing techniques within a GIS environment for the seismic vulnerability assessment of urban areas: an operational application. Remote Sensing 8 (2), 146. https://doi.org/10.3390/rs8020146.

[18]

Cui L., Jing X., Wang Y., Huan Y., Xu Y., Zhang Q., 2023. Improved swin transformerbased semantic segmentation of postearthquake dense buildings in urban areas using remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 16, 369-385. https://doi.org/10.1109/jstars.2022.3225150.

[19]

D'Aranno, P. J.V., Di Benedetto, A., Fiani, M., Marsella, M., 2019. Remote sensing technologies for linear infrastructure monitoring. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 461-468. https://doi.org/10.5194/isprs-archives-xlii-2-w11-461-2019.XLII-2/W11.

[20]

Delouis B., Giardini D., Lundgren P., Salichon J., 2002. Joint inversion of insar, GPS, teleseismic, and strong-motion data for the spatial and temporal distribution of earthquake slip: application to the 1999 izmit mainshock. Bulletin of the Seismological Society of America 92 (1), 278-299. https://doi.org/10.1785/0120000806.

[21]

Dittrich J., Holbling D., Tiede D., Samundsson P., 2022. Inferring 2D local surfacedeformation velocities based on psi analysis of sentinel-1 data: a case study of orafajokull, iceland. Remote Sensing 14 (13), 3166. https://doi.org/10.3390/rs14133166.

[22]

Dobrinic D., Medak D., Gasparovic M., 2020. Integration of multitemporal sentinel-1 and sentinel-2 imagery for land-cover classification using machine learning methods. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 91-98. https://doi.org/10.5194/isprs-archives-xliii-b1-2020-91-2020.XLIII-B1-2020.

[23]

Dominici D., Alicandro M., Massimi V., 2016. UAV photogrammetry in the postearthquake scenario: case studies in L'Aquila. Geomatics, Natural Hazards and Risk 8 (1), 87-103. https://doi.org/10.1080/19475705.2016.1176605.

[24]

Dong Y., Li Q., Dou A., Wang X., 2011. Extracting damages caused by the 2008 Ms 8.0 wenchuan earthquake from SAR remote sensing data. Journal of Asian Earth Sciences 40 (4), 907-914. https://doi.org/10.1016/j.jseaes.2010.07.009.

[25]

Dou J., Yunus A.P., Bui D.T., Sahana M., Chen C.W., Zhu Z., Wang W., et al., 2019. Evaluating GIS-based multiple statistical models and data mining for earthquake and rainfall-induced landslide susceptibility using the lidar DEM. Remote Sensing 11 (6), 638. https://doi.org/10.3390/rs11060638.

[26]

Ekmekcioglu O., Demir N., 2021. Automated detection of collapsed buildings with use of optical and SAR images, case study: izmir earthquake on october 30th,2020. The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences 707-712. https://doi.org/10.5194/isprs-archives-xliii-b3-2021-707-2021.XLIII-B3-2021.

[27]

Evers M., Thiele A., Hammer H., Hinz S., 2022. Psdefopat-towards automatic model based psi post-processing. ISPRS Annals of the Photogrammetry. Remote Sensing and Spatial Information Sciences V-3, 107-114. https://doi.org/10.5194/isprs-annals-v-3-2022-107-2022,2022.

[28]

Fialko Y., Simons M., Agnew D.C., 2001. The complete(3-D) surface displacement field in the epicentral area of the 1999 Mw7.1 hector mine earthquake, california, from space geodetic observations. Geophysical Research Letters 28 (16), 3063-3066. https://doi.org/10.1029/2001g1013174.

[29]

Frank J.H., Rebbapragada U., Bialas J., Oommen T., Havens T.C., 2017. Effect of label noise on the machine-learned classification of earthquake damage. Remote Sensing 9 (8), 803. https://doi.org/10.3390/rs9080803.

[30]

Geiß C., Taubenbock H., 2012. Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap. Natural Hazards 68 (1), 7-48. https://doi.org/10.1007/s11069-012-0322-2.

[31]

Gernhardt S., Adam N., Eineder M., Bamler R., 2010. Potential of very high resolution SAR for persistent scatterer interferometry in urban areas. Annals of GIS 16 (2), 103-111. https://doi.org/10.1080/19475683.2010.492126.

[32]

Ghaffarian S., Kerle N., Filatova T., 2018. Remote sensing-based proxies for urban disaster risk management and resilience: a review. Remote Sensing 10 (11), 1760. https://doi.org/10.3390/rs10111760.

[33]

Gonzalez-Drigo R., Cabrera E., Luzi G., Pujades L.G., Alzate Y.F.V., Avila-Haro J.A., 2019. Assessment of post-earthquake damaged building with interferometric real aperture radar. Remote Sensing 11 (23), 2830. https://doi.org/10.3390/rs11232830.

[34]

Gretton-Watson G.P., 1985. Spaceborne Remote Sensing in the Next Decade. Physics Bulletin 36, 387-389. https://doi.org/10.1088/0031-9112/36/9/023.

[35]

Griffiths H., 1992. Introduction to remote sensing. Electronics and Communications Engineering Journal 4 (3), 151. https://doi.org/10.1049/ecej:19920026.

[36]

Guerrieri L., Vittori E., Comerci V., Esposito E., Porfido S., Michetti A., Serva L., Silva P.G., 2013. Mapping and cataloguing earthquake environmental effects for seismic hazard assessment: The contribution of remote sensing techniques. Annals of Geophysics 56 (5). https://doi.org/10.4401/ag-6444.

[37]

Gueye L.A., Keita M.S., Akinyede J.O., Kufoniyi O., Erin G., 2015. Development of a cartographic strategy and geospatial services for disaster early warning and mitigation in the ecowas subregion. The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences 203-209. https://doi.org/10.5194/isprsarchives-xl-3-w3-203-2015.XL-3/W3.

[38]

Gunay S., Mosalam K.M., 2013. Peer performance-based earthquake engineering methodology, revisited. Journal of Earthquake Engineering 17 (6), 829-858. https:// doi.org/10.1080/13632469.2013.787377.

[39]

Hobbs T., Journeay J.M., Rao A., Kolaj M., Martins L., LeSueur P., Simionato M., et al., 2023. A national seismic risk model for canada: methodology and scientific basis. Earthquake Spectra 39 (3), 1410-1434. https://doi.org/10.1177/87552930231173446.

[40]

Hong-yun S., Yang S., Tan Q., 2010. A case study on co-seismic ground deformation of the wenchuan earthquake using l-band and c-band sar interferometry. In: 2010 18th International Conference on Geoinformatics. https://doi.org/10.1109/geoinformatics.2010.5567697.

[41]

Hoppe E.J., Bruckno B.S., Campbell E., Acton S.T., Vaccari A., Stuecheli M., Bohane A., et al., 2016. Transportation infrastructure monitoring using satellite remote sensing. Materials and Infrastructures 1, 185-198. https://doi.org/10.1002/9781119318583.ch14.

[42]

Huang Z., Zhang G., Shan X., Gong W., Zhang Y., Li Y., 2019. Co-seismic deformation and fault slip model of the 2017 Mw 7.3 Darbandikhan, Iran-Iraq earthquake inferred from D-InSAR measurements. Remote Sensing 11 (21), 2521. https://doi.org/10.3390/rs11212521.

[43]

Huyck C.K., Adams B.J., Cho S., Chung H.C., Eguchi R.T., 2005. Towards rapid citywide damage mapping using neighborhood edge dissimilarities in very highresolution optical satellite imagery-application to the 2003 Bam, Iran, earthquake. Earthquake Spectra 21 (1_suppl), 255-266. https://doi.org/10.1193/1.2101907.

[44]

Jagoda M., Rutkowska M., 2020. An analysis of the Eurasian tectonic plate motion parameters based on GNSS stations positions in itrf 2014. Sensors 20 (21), 6065. https://doi.org/10.3390/s20216065.

[45]

Jiang D., Zhuang D., Huang Y., Fu J., 2009. Advances in multi-sensor data fusion: algorithms and applications. Sensors 9 (10), 7771-7784. https://doi.org/10.3390/s91007771.

[46]

Jiang X., Tang L., Wang C., Wang C., 2004. Spectral characteristics and feature selection of hyperspectral remote sensing data. International Journal of Remote Sensing 25 (1), 51-59. https://doi.org/10.1080/0143116031000115292.

[47]

Jian-yan S., 2011. A Survey on Remote Sensing Technology in Post-earthquake Damage Assessment. Journal of Zhongzhou University.

[48]

Jin D., Wang X., Dou A., Dong Y., 2011. Post-earthquake building damage assessment in yushu using airborne sar imagery. Earthquake Science 24 (5), 463-473. https://doi.org/10.1007/s11589-011-0808-0.

[49]

Jing F., Singh R.P., Cui Y., Sun K., 2020. Microwave brightness temperature characteristics of three strong earthquakes in sichuan province, china. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13, 513-522. https://doi.org/10.1109/jstars.2020.2968568.

[50]

Johnson C., Fu Y., Birgmann R., 2017. Seasonal water storage, stress modulation, and california seismicity. Science 356 (6343), 1161-1164. https://doi.org/10.1126/science.aak9547.

[51]

Joyce K.E., Belliss S.E., Samsonov S., McNeill S., Glassey P., 2009. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Progress in Physical Geography: Earth and Environment 33 (2), 183-207. https://doi.org/10.1177/0309133309339563.

[52]

Kaplan O., Kaplan G., 2021. Response spectra-based post-earthquake rapid structural damage estimation approach aided with remote sensing data: 2020 samos earthquake. Buildings 12 (1), 14. https://doi.org/10.3390/buildings12010014.

[53]

Klinger Y., Okubo K., Vallage A., Champenois J., Delorme A., Rougier E., Lei Z., et al., 2018. Earthquake damage patterns resolve complex rupture processes. Geophysical Research Letters 45 (19). https://doi.org/10.1029/2018g1078842.

[54]

Kramer S.L., 1995. Geotechnical Earthquake Engineering. Geotechnical Earthquake Engineering. ISBN:9780133749434.

[55]

Lagaros N.D., Papadrakakis M., 2007. Seismic design of RC structures: a critical assessment in the framework of multi-objective optimization. Earthquake Engineering and Structural Dynamics 36 (12), 1623-1639. https://doi.org/10.1002/eqe.70.

[56]

Lagaros N.D., Fotis A.D., Krikos S.A., 2006. Assessment of seismic design procedures based on the total cost. Earthquake Engineering and Structural Dynamics 35 (11), 1381-1401. https://doi.org/10.1002/eqe.585.

[57]

Laksono F.X.A.T., Kovács J., 2022. Application of the PTVA-4 modeling in assessment of building vulnerability to earthquake and tsunami: a simple and reliable method for preliminary study of tsunami-prone zones. Academic Perspective Procedia 5 (2), 243-252. https://doi.org/10.33793/acperpro.05.02.7324.

[58]

Lakusic S., 2023. Structural behavior of single bay two-story basalt fiber reinforced concrete frame. Journal of the Croatian Association of Civil Engineers 74 (12), 1085-1092. https://doi.org/10.14256/jce.3550.2022.

[59]

Lane C.R., Liu H., Autrey B.C., Anenkhonov O.A., Chepinoga V.V., Wu Q., 2014. Improved wetland classification using eight-band high resolution satellite imagery and a hybrid approach. Remote Sensing 6 (12), 12187-12216. https://doi.org/10.3390/rs61212187.

[60]

Lee W.K., Billington S.L., 2008. Simulation of self-centring fibre-reinforced concrete columns. Proceedings of the Institution of Civil Engineers- Engineering and Computational Mechanics 161 (2), 77-84. https://doi.org/10.1680/eacm.2008.161.2.77.

[61]

Levine N., Spencer B.F., 2022. Post-earthquake building evaluation using UAVs: a BIMbased digital twin framework. Sensors 22 (3), 873. https://doi.org/10.3390/s22030873.

[62]

Li Q., Zhang J., Jiang H., 2019. Incorporating multi-source remote sensing in the detection of earthquake-damaged buildings based on logistic regression modelling. https://doi.org/10.5194/nhess-2019-20.

[63]

Li Y., Huang J., Jiang S.H., Huang F., Chang Z., 2017. A web-based GPS system for displacement monitoring and failure mechanism analysis of reservoir landslide. Scientific Reports 7 (1). https://doi.org/10.1038/s41598-017-17507-7.

[64]

Liang R., Dai K., Shi X., Bin G., Dong X., Liang F., Tomas R., et al., 2021. Automated mapping of Ms 7.0 Jiuzhaigou earthquake(China) post-disaster landslides based on high-resolution UAV imagery. Remote Sensing 13 (7), 1330. https://doi.org/10.3390/rs13071330.

[65]

Liebenberg K., Smit A.B., Coetzee S., Kijko A., 2017. A GIS approach to seismic risk assessment with an application to mining-related seismicity in Johannesburg, South Africa. Acta Geophysica 65 (4), 645-657. https://doi.org/10.1007/s11600-017-0052-7.

[66]

Liu H., Song C., Li Z., Liu Z., Ta L., Zhang X., Chen B., et al., 2024. A new method for the identification of earthquake-damaged buildings using sentinel-1 multitemporal coherence optimized by homogeneous SAR pixels and histogram matching. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 17, 7124-7143. https://doi.org/10.1109/jstars.2024.3377218.

[67]

Ma H.K., Liu Y., Ren Y., Yu J., 2019. Detection of collapsed buildings in postearthquake remote sensing images based on the improved yolov3. Remote Sensing 12 (1), 44. https://doi.org/10.3390/rs12010044.

[68]

Ma L., Sacks R., Zeibak-Shini R., Filin S., 2015. A computational procedure for generating specimens of BIM and point cloud data for building change detection. Computing in Civil Engineering. https://doi.org/10.1061/9780784479247.085,2015.

[69]

Mackenzie D., Elliott A.J., 2017. Untangling tectonic slip from the potentially misleading effects of landform geometry. Geosphere. https://doi.org/10.1130/ges01386.1.GES01386.1.

[70]

Marsella M., Scaioni M., 2018. Sensors for deformation monitoring of large civil infrastructures. Sensors 18 (11), 3941. https://doi.org/10.3390/s18113941.

[71]

Martinez S.N., Schaefer L.N., Allstadt K.E., Thompson E.M., 2021. Evaluation of Remote Mapping Techniques for Earthquake-Triggered Landslide Inventories in an Urban Subarctic Environment: A Case Study of the 2018 Anchorage, Alaska Earthquake. Frontiers in Earth Science 9. https://doi.org/10.3389/feart.2021.673137.

[72]

Massonnet D., Feigl K.L., 1998. Radar interferometry and its application to changes in the earth's surface. Reviews of Geophysics 36 (4), 441-500. https://doi.org/10.1029/97rg03139.

[73]

Matin S.S., Pradhan B., 2021. Earthquake-induced building-damage mapping using explainable AI (XAI). Sensors 21 (13), 4489. https://doi.org/10.3390/s21134489.

[74]

Matsuoka M., Nojima N., 2010. Building damage estimation by integration of seismic intensity information and satellite l-band sar imagery. Remote Sensing 2 (9), 2111-2126. https://doi.org/10.3390/rs2092111.

[75]

McCallen D., Petersson A., Rodgers A.R., Pitarka A., Miah M., Petrone F., Sjogreen B., et al., 2020. EQSIM-a multidisciplinary framework for fault-to-structure earthquake simulations on exascale computers part i : computational models and workflow. Earthquake Spectra 37 (2), 707-735. https://doi.org/10.1177/8755293020970982.

[76]

Melville W.K., Lenain L., Cayan D.R., Kahru M., Kleissl J., Linden P.F., Statom N.M., 2016. The modular aerial sensing system. Journal of Atmospheric and Oceanic Technology 33 (6), 1169-1184.

[77]

Milillo P., Giardina G., DeJong M.J., Perissin D., Milillo G., 2018. Multi-temporal InSAR structural damage assessment: The London Crossrail case study. Remote Sensing 10 (2), 287. https://doi.org/10.3390/rs10020287.

[78]

Milliner C.W.D., Donnellan A., 2020. Using daily observations from Planet Labs satellite imagery to separate the surface deformation between the 4 July Mw 6.4 foreshock and 5 July Mw 7.1 mainshock during the 2019 Ridgecrest earthquake sequence. Seismological Research Letters 91 (4), 1986-1997. https://doi.org/10.1785/0220190271.

[79]

Mistry H.K., Lombardi D., 2022. Pricing risk-based catastrophe bonds for earthquakes at an urban scale. Scientific Reports 12 (1). https://doi.org/10.1038/s41598-022-13588-1.

[80]

Mitishita E.A., Costa F.D.O., Centeno J.A.S., 2020. Lidar and photogrammetric datasets integration using sub-block of images. ISPRS Annals of the Photogrammetry. Remote Sensing and Spatial Information Sciences V-1, 101-107. https://doi.org/10.5194/isprs-annals-v-1-2020-101-2020,2020.

[81]

Mizrahi L., Nandan S., Wiemer S., 2021. The effect of declustering on the size distribution of mainshocks. Seismological Research Letters 92 (4), 2333-2342. https://doi.org/10.1785/0220200231.

[82]

Mohapatra R.P., Wu C., 2010. High resolution impervious surface estimation. Photogrammetric Engineering and Remote Sensing 76 (12), 1329-1341. https://doi.org/10.14358/pers.76.12.1329.

[83]

Monsalve-Tellez J.M., Torres-Leon J.L., Garces-Gomez Y.A., 2022. Evaluation of SAR and optical image fusion methods in oil palm crop cover classification using the random forest algorithm. Agriculture 12 (7), 955. https://doi.org/10.3390/agriculture12070955.

[84]

Morishita Y., Kobayashi T., 2022. Three-dimensional deformation and its uncertainty derived by integrating multiple SAR data analysis methods. Earth, Planets and Space 74 (1). https://doi.org/10.1186/s40623-022-01571-z.

[85]

Nabilou M., Arian M., Afzal P., Mehrnia A.K., 2018. Determination of relationship between basement faults and alteration zones in Bafq-Esfordi region, Central Iran. Episodes 41. https://doi.org/10.18814/epiiugs/2018/018013.

[86]

Nonaka T., Asaka T., 2024. Analyzing building damage from the Kumamoto earthquake using Sentinel-1 data: Impact of different acquisition conditions. Journal of Applied Remote Sensing 18 (2). https://doi.org/10.1117/1.JRS.18.024508.

[87]

Oommen T., Rebbapragada U., Cerminaro D., 2012. Earthquake damage assessment using objective image segmentation: A case study of 2010 Haiti earthquake. GeoCongress 2012. https://doi.org/10.1061/9780784412121.314.

[88]

Pagani M., Garcia-Pelaez J.A., Gee R., Johnson K., Poggi V., Silva V., Simionato M., et al., 2020. The 2018 version of the global earthquake model: Hazard component. Earthquake Spectra 36 (1_suppl), 226-251. https://doi.org/10.1177/8755293020931866.

[89]

Pesaresi M., Syrris V., Julea A., 2016. A new method for earth observation data analytics based on symbolic machine learning. Remote Sensing 8 (5), 399. https:// doi.org/10.3390/rs8050399.

[90]

Picozzi M., Iaccarino A.G., Spallarossa D., Bindi D., 2023. On catching the preparatory phase of damaging earthquakes: An example from central Italy. https://doi.org/10.21203/rs.3.rs-2957583/v1.

[91]

Qi Y., Zhang M., Wu L., Ding Y., 2021. Seismic microwave brightness temperature anomaly detection using multitemporal passive microwave satellite images: Ideas and limits. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14, 6792-6806. https://doi.org/10.1109/jstars.2021.3093819.

[92]

Rashidian V., Baise L.G., Koch M., 2020. Using high resolution optical imagery to detect earthquake-induced liquefaction: The 2011 Christchurch earthquake. Remote Sensing 12 (3), 377. https://doi.org/10.3390/rs12030377.

[93]

Rathje E.M., Adams B.J., 2008. The role of remote sensing in earthquake science and engineering: Opportunities and challenges. Earthquake Spectra 24 (2), 471-492. https://doi.org/10.1193/1.2923922.

[94]

Rathje E.M., Franke K.W., 2016. Remote sensing for geotechnical earthquake reconnaissance. Soil Dynamics and Earthquake Engineering 91, 304-316. https:// doi.org/10.1016/j.soildyn.2016.09.016.

[95]

Ren Z., Zhang Z., Chen T., Yan S., Yin J., Zhang P., Zheng W., et al., 2015. Clustering of offsets on the Haiyuan fault and their relationship to paleoearthquakes. Geological Society of America Bulletin (1). https://doi.org/10.1130/b31155.1.

[96]

Rodriguez J., Ustin S.L., Sandoval-Solis S., O'Geen A.T., 2016. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water. Science of the Total Environment 565, 1020-1027. https://doi.org/10.1016/j.scitotenv.2016.05.146.

[97]

Saraf A.K., 2000. Cover: IRS-1C-PAN depicts Chamoli earthquake induced landslides in Garhwal Himalayas, India. International Journal of Remote Sensing 21 (12), 2345-2352. https://doi.org/10.1080/01431160050030493.

[98]

Saraf A.K., 1998. Jabalpur earthquake of 22 May 1997:Assessing the damage using remote sensing and GIS techniques. In:Proceedings of the 11th Symposium on Earthquake Engineering, I. University of Roorkee, Roorkee, pp. 103-116, 17-19 December 1998.

[99]

Schnebele E., Tanyu B.F., Cervone G., Waters N., 2015. Review of remote sensing methodologies for pavement management and assessment. European Transport Research Review 7 (2). https://doi.org/10.1007/s12544-015-0156-6.

[100]

Scott C., Champenois J., Klinger Y., Nissen E., Maruyama T., Chiba T., Arrowsmith R., 2019. The 2016 M7 Kumamoto, Japan, earthquake slip field derived from a joint inversion of differential lidar topography, optical correlation, and InSAR surface displacements. Geophysical Research Letters 46 (12), 6341-6351. https://doi.org/10.1029/2019g1082202.

[101]

Sharifisoraki Z., Dey A., Selzler R., Amini M., Green J.R., Rajan S., Kwamena F., 2023. Monitoring critical infrastructure using 3D lidar point clouds. IEEE Access 11, 314-336. https://doi.org/10.1109/access.2022.3232338.

[102]

Shen X., Zhang X., Hong S., Jing F., Zhao S., 2013. Progress and development on multiparameters remote sensing application in earthquake monitoring in China. Earthquake Science 26 (6), 427-437. https://doi.org/10.1007/s11589-013-0053-9.

[103]

Singh V.P., Singh R.P., 2005. Changes in stress pattern around epicentral region of Bhuj earthquake of 26 January 2001. Geophysical Research Letters 32 (24). https:// doi.org/10.1029/2005gl023912.

[104]

Song D., Tan X., Wang B., Zhang L., Shan X., Cui J., 2019. Integration of super-pixel segmentation and deep-learning methods for evaluating earthquake-damaged buildings using single-phase remote sensing imagery. International Journal of Remote Sensing 41 (3), 1040-1066. https://doi.org/10.1080/01431161.2019.1655175.

[105]

Steblov G.M., Ekström G., Koran M.H., Freymueller J.T., Titkov N.N., Vasilenko N.F., Nettles M., et al., 2014. First geodetic observations of a deep earthquake: The 2013 Sea of Okhotsk Mw 8.3, 611 km -deep, event. Geophysical Research Letters 41 (11), 3826-3832. https://doi.org/10.1002/2014gl060003.

[106]

Su G., Qi W., Zhang S., Sim T., Liu X., Sun R., Sun L., et al., 2015. An integrated method combining remote sensing data and local knowledge for the large-scale estimation of seismic loss risks to buildings in the context of rapid socioeconomic growth: A case study in Tangshan, China. Remote Sensing 7 (3), 2543-2601. https://doi.org/10.3390/rs70302543.

[107]

Sun X., Chen X., Yang L., Wang W., Zhou X., Wang L., Yao Y., 2022. Using InSAR and PolSAR to assess ground displacement and building damage after a seismic event: Case study of the 2021 Baicheng earthquake. Remote Sensing 14 (13), 3009. https://doi.org/10.3390/rs14133009.

[108]

Taftsoglou M., Valkaniotis S., Papathanassiou G., Karantanellis E., 2023. Satellite imagery for rapid detection of liquefaction surface manifestations: The case study of Türkiye-Syria 2023 earthquakes. Remote Sensing 15 (17), 4190. https://doi.org/10.3390/rs15174190.

[109]

Trainor-Guitton W., Guitton A., Jreij S., Powers H., Sullivan B., 2019. 3D imaging of geothermal faults from a vertical DAS fiber at Brady Hot Spring, NV USA. Energies 12 (7), 1401. https://doi.org/10.3390/en12071401.

[110]

Tralli D.M., Blom R.G., Zlotnicki V., Donnellan A., Evans D.L., 2005. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS Journal of Photogrammetry and Remote Sensing 59 (4), 185-198. https:// doi.org/10.1016/j.isprsjprs.2005.02.002.

[111]

Tronin A.A., 2009. Satellite remote sensing in seismology. A review. Remote Sensing 2 (1), 124-150. https://doi.org/10.3390/rs2010124.

[112]

Turcinovic F., Kacan M., Bojanjac D., Bosiljevac M., 2023. Ground based SAR system for object classification with parameter optimization based on deep learning feedback algorithm. Image and Signal Processing for Remote Sensing XXIX. https://doi.org/10.1117/12.2679852.

[113]

Ueda T., Kato A., 2019. Seasonal variations in crustal seismicity in San-in district, southwest Japan. Geophysical Research Letters 46 (6), 3172-3179. https://doi.org/10.1029/2018gl081789.

[114]

Underwood G., Orchiston C., Shrestha S.R., 2020. Post-earthquake cordons and their implications. Earthquake Spectra 36 (4), 1743-1768. https://doi.org/10.1177/8755293020936293.

[115]

Wang Y., Cui L., Zhang C., Chen W.L., Xu Y., Zhang Q., 2022. A two-stage seismic damage assessment method for small, dense, and imbalanced buildings in remote sensing images. Remote Sensing 14 (4), 1012. https://doi.org/10.3390/rs14041012.

[116]

Wang J., Zhang L., 2008. Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. Journal of Climate 21 (10), 2218-2238. https://doi.org/10.1175/2007jcli1944.1.

[117]

Wang K., Fialko Y., 2014. Space geodetic observations and models of postseismic deformation due to the 2005 M7.6 Kashmir (Pakistan) earthquake. Journal of Geophysical Research: Solid Earth 119 (9), 7306-7318. https://doi.org/10.1002/2014jb011122.

[118]

Wang W., Xiang D., Ban Y., Zhang J., Wan J., 2018. Enhanced edge detection for polarimetric SAR images using a directional span-driven adaptive window. International Journal of Remote Sensing 39 (19), 6340-6357. https://doi.org/10.1080/01431161.2018.1460501.

[119]

Wartman J., Berman J.W., Bostrom A., Miles S.B., Olsen M.J., Gurley K.R., Irish J.L., et al., 2020. Research needs, challenges, and strategic approaches for natural hazards and disaster reconnaissance. Frontiers in Built Environment 6. https://doi.org/10.3389/fbuil.2020.573068.

[120]

Wei B., Nie G., Su G., Sun L., Bai X., Qi W., 2017. Risk assessment of people trapped in earthquake based on km grid: A case study of the 2014 Ludian earthquake, China. Geomatics, Natural Hazards and Risk 8 (2), 1289-1305. https://doi.org/10.1080/19475705.2017.1318795.

[121]

Wei C., Zhang Y., Guo X., Hui S., Manzhong Q., Zhang Y., 2013. Thermal infrared anomalies of several strong earthquakes. The Scientific World Journal 2013, 1-11. https://doi.org/10.1155/2013/208407.

[122]

Wei Z., Sun H., He H., 2022. Review on the application of airborne lidar in active tectonics of China: Dushanzi reverse fault in the northern Tian Shan. Frontiers in Earth Science 10. https://doi.org/10.3389/feart.2022.895758.

[123]

Weiss J., Walters R.J., Morishita Y., Wright T., Lazecky M., Wang H., Hussain E., et al., 2020. High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data. Geophysical Research Letters 47 (17). https://doi.org/10.1029/2020g1087376.

[124]

Wu Y., Liu J., Zhu C.Z., Bai Z., Miao Q., Ma W., Gong M., 2020. Computational intelligence in remote sensing image registration: A survey. International Journal of Automation and Computing 18 (1), 1-17. https://doi.org/10.1007/s11633-020-1248-x.

[125]

Wu M., Huang Y., Peng C., 2024. Application of UAV remote sensing technology in surveying and mapping engineering measurement. In: Fifth International Conference on Geology, Mapping, and Remote Sensing (ICGMRS 2024). https://doi.org/10.1117/12.3035583.

[126]

Wu S., Zhang B., Liang H., Wang C., Ding X., Zhang L., 2021. Detecting the deformation anomalies induced by underground construction using multiplatform MT-InSAR: A case study in To Kwa Wan Station, Hong Kong. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14, 9803-9814. https://doi.org/10.1109/jstars.2021.3113672.

[127]

Xie S., Duan J., Liu S., Dai Q., Liu W., Ma Y., Guo R., et al., 2016. Crowdsourcing rapid assessment of collapsed buildings early after the earthquake based on aerial remote sensing image: A case study of Yushu earthquake. Remote Sensing 8 (9), 759. https://doi.org/10.3390/rs8090759.

[128]

Xie Y., Sichani M.E., Padgett J.E., DesRoches R., 2020. The promise of implementing machine learning in earthquake engineering: A state-of-the-art review. Earthquake Spectra 36 (4), 1769-1801. https://doi.org/10.1177/8755293020919419.

[129]

Xu M., Jiang L., Jia X., 2018. The global coverage of a remote-sensing satellite in a sunsynchronous orbit. Transactions of the Japan Society for Aeronautical and Space Sciences 61 (3), 99-105. https://doi.org/10.2322/tjsass.61.99.

[130]

Yamazaki F., Matsuoka M., 2007. Remote sensing technologies in post-disaster damage assessment. Journal of Earthquake and Tsunami 1 (03), 193-210. https://doi.org/10.1142/s1793431107000122.

[131]

Yang W., Zhang X., Luo P., 2021. Transferability of convolutional neural network models for identifying damaged buildings due to earthquake. Remote Sensing 13 (3), 504. https://doi.org/10.3390/rs13030504.

[132]

Yang X., Chen L., 2010. Using multi-temporal remote sensor imagery to detect earthquake-triggered landslides. International Journal of Applied Earth Observation and Geoinformation 12 ( 6), 487-495. https://doi.org/10.1016/j.jag.2010.05.006.

[133]

Yulianto F., Sofan P., Zubaidah A., Sukowiati K.A.D., Pasaribu J.M., Khomarudin M.R., 2015. Detecting areas affected by flood using multi-temporal ALOS PALSAR remotely sensed data in Karawang, West Java, Indonesia. Natural Hazards 77 (2), 959-985. https://doi.org/10.1007/s11069-015-1633-x.

[134]

Yun S.H., Hudnut K.W., Owen S.E., Webb F., Simons M., Sacco P., Gurrola E.M., et al., 2015. Rapid damage mapping for the 2015 Mw 7.8 Gorkha earthquake using synthetic aperture radar data from COSMO-SkyMed and ALOS-2 satellites. Seismological Research Letters 86 (6), 1549-1556. https://doi.org/10.1785/0220150152.

[135]

Zhang R., Tian J., Li Z.L., Su H., Chen S., Tang X.Z., 2010. Principles and methods for the validation of quantitative remote sensing products. Science China Earth Sciences 53 (5), 741-751. https://doi.org/10.1007/s11430-010-0021-3.

[136]

Zhang B., Lei L., Zhang L., Liu L., Zhu B., Zuo Z., 2009. Application of optical remote sensing in the Wenchuan earthquake assessment. Second International Conference on Earth Observation for Global Changes 7471, 433-442.

[137]

Zhang B., Wu Y., Zhao B., Chanussot J., Hong D., Yao J., Gao L., 2022. Progress and challenges in intelligent remote sensing satellite systems. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15, 1814-1822. https://doi.org/10.1109/jstars.2022.3148139.

[138]

Zhang Y., Guo X., Zhong M., Shen W., Wen L., He B., 2010. Wenchuan earthquake: Brightness temperature changes from satellite infrared information. Chinese Science Bulletin 55 ( 18), 1917-1924. https://doi.org/10.1007/s11434-010-3016-8.

[139]

Zhou Y., Parsons B., Elliott J.R., Barisin I., Walker R., 2015. Assessing the ability of Pleiades stereo imagery to determine height changes in earthquakes: A case study for the El Mayor-Cucapah epicentral area. Journal of Geophysical Research: Solid Earth 120 (12), 8793-8808. https://doi.org/10.1002/2015jb012358.

[140]

Zinke R., Dolan J.F., Rhodes E.J., Van Dissen R.J., Hatem A.E., McGuire C.P., Brown N.D., et al., 2021. Latest Pleistocene-Holocene incremental slip rates of the Wairau fault: Implications for long-distance and long-term coordination of faulting between North and South Island, New Zealand. Geochemistry, Geophysics, Geosystems 22 (9). https://doi.org/10.1029/2021gc009656.

PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

/