Frontiers in Chinese seismology: Synthesizing innovations from the 18th Seismological Society of China Conference (SSC 2023)

Xiangli He , Tao Li , Qinxia Wang , Ziyue Wang , Zhaoning Chen , Chong Xu

Earthquake Research Advances ›› 2025, Vol. 5 ›› Issue (2) : 58 -69.

PDF
Earthquake Research Advances ›› 2025, Vol. 5 ›› Issue (2) :58 -69. DOI: 10.1016/j.eqrea.2024.100351
research-article

Frontiers in Chinese seismology: Synthesizing innovations from the 18th Seismological Society of China Conference (SSC 2023)

Author information +
History +
PDF

Abstract

The 18th Academic Conference of the Seismological Society of China was held in Guiyang, China, on August 7, 2023, fostering academic exchanges on the latest advancements in earthquake science. The conference featured 170 abstracts and nearly 300 academic presentations. In this paper, we classify and summarize the scholars' presentations, analyzing the current state and progress of earthquake science in China from four key perspectives: crustal structure dynamics, earthquake mechanisms, seismic resilience of urban and rural infrastructure, and innovative earthquake services. The presentations reveal that research primarily focuses on detecting crustal structures in southwest China, with seismic imaging technology and magnetotelluric detection being the most commonly used methods. Studies on earthquake mechanisms are centered on recent destructive events, such as the 2023 MW 7.8 and MW 7.6 Türkiye earthquakes, the 2022 MW 6.7 Luding earthquake, and the 2021 MW 7.4 Madoi earthquake. Regarding seismic resilience, the focus is on shock resistance and seismic isolation experiments involving large-scale hybrid structures, as well as the formation mechanisms and risk assessments of earthquake-triggered disaster chains. Additionally, significant progress has been made in smart earthquake services, particularly in rapid disaster assessment, earthquake disaster information extraction technology, the China Seismic Experimental Site, and the strong-motion Flatfile database for mainland China. Overall, this conference highlighted that earthquake science in China has reached a new level of development. However, numerous scientific challenges and critical technologies remain to be addressed, such as acquiring higher-resolution crustal structures and applying big data and artificial intelligence to diverse seismic models and earthquake services, which requires the continued collaboration of researchers in the field.

Keywords

Crustal structure / Earthquake mechanisms / Seismic resilience / Earthquake services / Academic conference / Seismological Society of China

Cite this article

Download citation ▾
Xiangli He, Tao Li, Qinxia Wang, Ziyue Wang, Zhaoning Chen, Chong Xu. Frontiers in Chinese seismology: Synthesizing innovations from the 18th Seismological Society of China Conference (SSC 2023). Earthquake Research Advances, 2025, 5(2): 58-69 DOI:10.1016/j.eqrea.2024.100351

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xiangli He: Writing - review & editing, Writing - original draft, Methodology, Conceptualization. Tao Li: Writing - review & editing, Writing - original draft, Investigation. Qinxia Wang: Writing - review & editing, Writing - original draft, Investigation. Ziyue Wang: Writing review & editing, Writing - original draft, Investigation. Zhaoning Chen: Writing - review & editing, Writing - original draft, Investigation. Chong Xu: Writing - review & editing, Methodology, Data curation, Conceptualization.

Declaration of competing interest

The authors declared that they have no conflicts of interest to this work. Chong Xu is the deputy Editor-in-Chief for Earthquake Research Advances and was not involved in the editorial review or the decision to publish this article.

Author agreement and acknowledgement

All the authors contributed to the study have approved the final version. This is the first time submission to this journal and also do not consider to submit to other Journals. And we would like to give the permission to the publisher to reproduce this paper in all media.

This study was supported by research grants from National Institute of Natural Hazards, Ministry of Emergency Management of China (ZDJ2024-16, 2023-JBKY-57) and the National Natural Science Foundation of China (42077259, 42002225).

References

[1]

An Y., Wang D., Ma Q., Xu Y., Li Y., Zhang Y., Liu Z., Huang C., Su J., Li J., 2023. Preliminary report of the september 5, 2022 MS 6.8 luding earthquake, Sichuan, China. Earthquake Research Advances 3 (1), 100184.

[2]

Cai G., Wang W., Wu J., Su J., Lai G., Wu P., Chen L., Su J., 2023. Three-dimensional body wave velocity structure and seismogenic structure for the 2022 MS 6.8 Luding earthquake sequence in Sichuan, China. Front. Earth Sci. 11, 1099744.

[3]

Chang C., Bo J., Qi W., Qiao F., Peng D., 2022a. Study on instability and damage of a loess slope under strong ground motion by numerical simulation. Soil Dynam. Earthq. Eng. 152, 107050.

[4]

Chang C., Bo J., Qi W., Qiao F., Peng D., 2022b. Distribution of large-and mediumscale loess landslides induced by the Haiyuan Earthquake in 1920 based on field investigation and interpretation of satellite images. Open Geosci. 14 (1), 995-1019.

[5]

Chen H., El Naggar M.H., Chu J., Li X., He Q., Wang L., Liu X., Zhou L., 2023a. Transverse response of utility tunnel under near fault ground motions: multi-shake table array tests. Soil Dynam. Earthq. Eng. 174, 108135.

[6]

Chen L., Wang W., Zhang L., 2021. Crustal thickness in southeast Tibet based on the SWChinaCVM-1.0 model. Earthq. Sci. 34 (3), 246-260.

[7]

Chen W., Rao G., Kang D., Wan Z., Wang D., 2023b. Early report of the source characteristics, ground motions, and casualty estimates of the 2023 M w 7.8 and 7.5 Turkey earthquakes. J. Earth Sci. 34 (2), 297-303.

[8]

Chen X., Liu C., Wang M., 2019. A method for quick assessment of earthquake-triggered landslide hazards: a case study of the Mw6. 12014 Ludian, China earthquake. Bull. Eng. Geol. Environ. 78, 2449-2458.

[9]

Chen Z., Huang Y., He X., Shao X., Li L., Xu C., Wang S., Xu X., Xiao Z., 2023c. Landslides triggered by the 10 June 2022 Maerkang earthquake swarm, Sichuan, China: spatial distribution and tectonic significance. Landslides 20 (10), 2155-2169.

[10]

Duan M., Zhou L., Zhao C., Zhang X., 2023a. High-resolution 3D crustal velocity structure imaging in the middle eastern boundary of the Sichuan-Yunnan Rhombic block. Tectonophysics 862, 229986.

[11]

Duan Y., Bo J., Peng D., Li Q., Wan W., Qi W., 2023b. Analysis of peak ground acceleration and seismogenic fault characteristics of the Mw7. 8 earthquake in Turkey. Appl. Sci. 13 (19), 10896.

[12]

Fan X., Scaringi G., Korup O., West A.J., van Westen C.J., Tanyas H., Hovius N., Hales T.C., Jibson R.W., Allstadt K.E., 2019. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev. Geophys. 57 (2), 421-503.

[13]

Fang H., Yao H., Zhang H., Huang Y.-C., van der Hilst R.D., 2015. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application. Geophys. J. Int. 201 (3), 1251-1263.

[14]

Guan Z., Wan Y., Huang S., Feng G., 2024. Study on the heterogeneity of the stress field in the Maduo earthquake fault zone. Seismol Res. Lett. 95 (4), 2485-2496.

[15]

Han G., Dai D., Li Y., Xi N., Sun L., 2024. Rapid report of the december 18, 2023 MS 6.2 jishishan earthquake, Gansu, China. Earthquake Research Advances 4 (2), 100287.

[16]

He K., Wen Y., Xu C., Zhao Y., 2022a. Fault geometry and slip distribution of the 2021 M W 7.4 Maduo, China, earthquake inferred from InSAR measurements and relocated aftershocks. Seismological Society of America 93 (1), 8-20.

[17]

He X., Xu C., 2022. Spatial distribution and tectonic significance of the landslides triggered by the 2021 Ms6. 4 Yangbi earthquake, Yunnan, China. Front. Earth Sci. 10, 1030417.

[18]

He X., Xu C., Wang W., Wang X., 2022b. Report on the establishment meeting of committee on earthquake hazard chain, seismological society of China and the first academic forum, 21-22 August 2021, Beijing, China. Natural Hazards Research 2 (1), 41-47.

[19]

He X., Zhao L.F., Xie X.B., Tian X., Yao Z.X., 2021a. Weak crust in southeast Tibetan plateau revealed by Lg-wave attenuation tomography: implications for crustal material escape. J. Geophys. Res. Solid Earth 126 (3), e2020JB020748.

[20]

He X., Li H., Wang H., Zhang L., Xu Z., Si J., 2018. Creeping along the GuanxianAnxian fault of the 2008 Mw 7.9 wenchuan earthquake in the longmen Shan, China. Tectonics 37 (7), 2124-2141.

[21]

He X., Huang Y., Chen Z., Li L., Wang W., Wang X., Xu C., 2023. Report on the second academic forum on earthquake hazard chain, 12 November 2022, Beijing, China. Natural Hazards Research 3 (1), 125-138.

[22]

He X., Xu C., Qi W., Huang Y., Cheng J., Xu X., Yao Q., Lu Y., Dai B., 2021b. Landslides triggered by the 2020 Qiaojia Mw5.1 earthquake, yunnan, China: distribution, influence factors and tectonic significance. J. Earth Sci. 32 (5), 1056-1068.

[23]

Hu L., Zhang F., Li Y., 2024. Crustal velocity structure of the Sichuan-Yunnan block revealed by high-quality crustal phase travel time. Seismol Res. Lett. 95 (3), 1913-1925.

[24]

Huang Y., Xu C., Zhang X., Li L., Xu X., 2023a. Research in the field of natural hazards based on bibliometric analysis. Nat. Hazards Rev. 24 (2), 04023012.

[25]

Huang Y., Xie C., Li T., Xu C., He X., Shao X., Xu X., Zhan T., Chen Z., 2023b. An open-accessed inventory of landslides triggered by the MS 6.8 Luding earthquake, China on September 5, 2022. Earthquake Research Advances 3 (1), 100181.

[26]

Kang Y., Peng L., Liu Q., Ma X., Bai W., 2023. Seismic control of tuned dampers for seismic isolated structures under near-fault pulse-like ground motions. Eng. Mech.

[27]

Li H., Chen S., Zhuang J., Zhang B., Shi L., 2021a. Gravity inversion method base on Bayesian-assimilation and its application in constructing crust density model of the Longmenshan region. Chin. J. Geophys. 64 (4), 1236-1252.

[28]

Li L., Wang W., Yu Z., Chen Y., 2024a. CREDIT-X1local: a reference dataset for machine learning seismology from ChinArray in Southwest China. Earthq. Sci. 37 (2), 139-157.

[29]

Li Q., Xie Z., 2024. Analysis of spatiotemporal variations in b-values before the 6.8 magnitude earthquake in Luding, Sichuan, China, on September 5, 2022. Acta Geophys. 1-18.

[30]

Li R., Zhao X., Bilotta E., Zhang J., Zhao M., Huang J., Yuan Y., 2024b. Shaking table tests on deformation pattern and failure mechanism of fault-crossing tunnels in nonrupture scenario. Soil Dynam. Earthq. Eng. 180, 108621.

[31]

Li Y., Zhao D., Shan X., Gao Z., Huang X., Gong W., 2022. Coseismic slip model of the 2022 Mw 6.7 Luding (Tibet) earthquake: pre-and post-earthquake interactions with surrounding major faults. Geophys. Res. Lett. 49 (24), e2022GL102043.

[32]

Li Y., Huang L., Ding R., Yang S., Liu L., Zhang S., Liu H., 2021b. Coulomb stress changes associated with the M7. 3 Maduo earthquake and implications for seismic hazards. Natural Hazards Research 1 (2), 95-101.

[33]

Liu-Zeng J., Liu Z., Liu X., Milliner C., Rodriguez Padilla A.M., Xu S., Avouac J.P., Yao W., Klinger Y., Han L., 2024. Fault orientation trumps fault maturity in controlling coseismic rupture characteristics of the 2021 Maduo earthquake. AGU Adv. 5 (2), e2023AV001134.

[34]

Liu L., Li Y., Ji L., Zhu L., 2022. Finite element simulation of stress change for the MS7. 4 Madoi earthquake and implications for regional seismic hazards. Earthquake Research Advances 2 (2), 100046.

[35]

Liu Q., Wang J., Chen J., Li S., Guo B., 2007. Seismogenic tectonic environment of 1976 great Tangshan earthquake: results from dense seismic array observations. Earth Sci. Front. 14 (6), 205-212.

[36]

Liu S., Suardi I., Xu X., Yang S., Tong P., 2021a. The geometry of the subducted slab beneath Sumatra revealed by regional and teleseismic traveltime tomography. J. Geophys. Res. Solid Earth 126 (1), e2020JB020169.

[37]

Liu Y., 2023. The Research on Earthquake Tsunami Risk Assessment Method Based on Hazard Analysis. Institute of Engineering Mechanics, China Earthquake Administration, Harbin, China. PhD.

[38]

Liu Y., Yao H., Zhang H., Fang H., 2021b. The community velocity model V. 1.0 of southwest China, constructed from joint body-and surface-wave travel-time tomography. Seismological Society of America 92 (5), 2972-2987.

[39]

Liu Y., Yu z., Zhang z., Yao H., Wang w., Zhang H., Fang H., Fang L., 2023. The highresolution community velocity model V2.0 of southwest China, constructed by joint body and surface wave tomography of data recorded at temporary dense arrays. Sci. China Earth Sci. 66 (10), 2368-2385.

[40]

Louderback G.D., 1942. Faults and earthquakes. Bull. Seismol. Soc. Am. 32 (4), 305-330.

[41]

Lu X., Yue Q., Xu Z., Wang Y., Gu D., Tian Y., 2024. A review on novel seismic secondary disasters in urban dense building areas. Ind. Constr. 54 (2), 25-34.

[42]

Miao H., Zhong Z., Hou B., Han J., Yan Q., Du X., 2023. Experience exploration and future trend of resilient cities with Chinese characteristics-from tangshan earthquake to wenchuan earthquake. J. Beijing Univ. Technol. 49 (7), 810-832.

[43]

Müller J., van Laaten M., Eulenfeld T., Wegler U., 2023. Coseismic drop of seismic velocity caused by the 2023 Turkey-Syria earthquakes. Geophysical Journal International ggad242.

[44]

Naddaf M., 2023. Turkey-Syria earthquake: what scientists know. Nature.

[45]

Nakaya S., 2006. Spatiotemporal variation in b value within the subducting slab prior to the 2003 Tokachi-oki earthquake (M 8.0), Japan. J. Geophys. Res. Solid Earth 111 (B3).

[46]

Nuannin P., Kulhanek O., Persson L., 2005. Spatial and temporal b value anomalies preceding the devastating off coast of NW Sumatra earthquake of December 26, 2004. Geophys. Res. Lett. 32 (11).

[47]

Nuannin P., Kulhánek O., Persson L., 2012. Variations of b-values preceding large earthquakes in the Andaman-Sumatra subduction zone. J. Asian Earth Sci. 61, 237-242.

[48]

Ou Q., Kulikova G., Yu J., Elliott A., Parsons B., Walker R., 2020. Magnitude of the 1920 Haiyuan earthquake reestimated using seismological and geomorphological methods. J. Geophys. Res. Solid Earth 125 (8), e2019JB019244.

[49]

Pan J., Li H., Chevalier M., Liu D., Li C., Liu F., Wu Q., Lu H., Jiao L., 2022. Coseismic surface rupture and seismogenic structure of the 2022 Ms6. 9 Menyuan earthquake, Qinghai Province, China. Acta Geol. Sin. 96 (1), 215-231.

[50]

Peng D., Bo J., Qi W., Chang C., Li X., Duan Y., 2024. The formation mechanism of low-angle loess-mudstone seismic landslides. Soil Dynam. Earthq. Eng. 180, 108607.

[51]

Qu Z., Zhu B., Cao Y., Fu H., 2023. Rapid report of seismic damage to buildings in the 2022 M 6.8 Luding earthquake, China. Earthquake Research Advances 3 (1), 100180.

[52]

Ren Y., Yao X., Kishida T., Wen R., Xu P., Ji K., Midorikawa S., Si H., Wang H., Zhang Y., 2021. Towards the strong motion flatfile in China: concept and purpose. Proceedings of the 17th World Conference on Earthquake Engineering.

[53]

Scholz C.H., 2015. On the stress dependence of the earthquake b value. Geophys. Res. Lett. 42 (5), 1399-1402.

[54]

Schorlemmer D., Wiemer S., Wyss M., 2005. Variations in earthquake-size distribution across different stress regimes. Nature 437 (7058), 539-542.

[55]

Shao X., Ma S., Xu C., Zhou Q., 2020. Effects of sampling intensity and non-slide/slide sample ratio on the occurrence probability of coseismic landslides. Geomorphology 363, 107222.

[56]

Shao X., Ma S., Xu C., Xie C., Li T., Huang Y., Huang Y., Xiao Z., 2024. Landslides triggered by the 2022 Ms. 6.8 Luding strike-slip earthquake: an update. Eng. Geol. 335, 107536.

[57]

Shen Z., J., Wang M., Bürgmann R., 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res. Solid Earth 110, B11409.

[58]

Smith W.D., 1981. The b-value as an earthquake precursor. Nature 289 (5794), 136-139.

[59]

Song X., Lei J., Zou K., 2023. The 2022 Luding, Sichuan, China, M 6.8 earthquake: a fluid-related earthquake? J. Asian Earth Sci., 105543

[60]

Tan Q., 2023. Research and application of off-line earthquake disaster rapid assessment and emergency mapping system. Progress in Earthquake Sciences 53 (2), 57-65.

[61]

Tapponnier P., Zhiqin X., Roger F., Meyer B., Arnaud N., Wittlinger G., Jingsui Y., 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science 294 (5547), 1671-1677.

[62]

Wan W., Bo J., Qi W., Peng D., Li Q., Duan Y., 2023. Analysis of peak ground acceleration attenuation characteristics in the Pazarcik earthquake, Türkiye. Appl. Sci. 13 (20), 11436.

[63]

Wang N., Sun B., Chen H., Chen X., Wang H., 2024a. The seismic resilience-based methodology of regional building function recovery assessment. Soil Dynam. Earthq. Eng. 180, 108601.

[64]

Wang W., Fang L., Wu J., Tu H., Chen L., Lai G., Zhang L., 2021. Aftershock sequence relocation of the 2021 Ms 7.4 Maduo earthquake, Qinghai, China. Sci. China Earth Sci. 64, 1371-1380.

[65]

Wang Z., Cheng J., Xu C., 2024b. Earthquake scenario-specific framework for spatial accessibility analysis (SAA) of emergency shelters: a case study in Xichang City, Sichuan Province, China. Front. Earth Sci. 12, 1376900.

[66]

Wei G., Chen K., Meng H., 2023. Bayesian inversion of finite-fault earthquake slip model using geodetic data, solving for non-planar fault geometry, variable slip, and data weighting. J. Geophys. Res. Solid Earth 128 (2), e2022JB025225.

[67]

Wu F., Xie J., An Z., Lyu C., Taymaz T., Irmak T.S., Li X., Wen Z., Zhou B., 2023. Pulse-like ground motion observed during the 6 february 2023 MW7.8 Pazarcık earthquake (Kahramanmaraş SE Türkiye). Earthq. Sci. 36 (4), 328-339.

[68]

Wu J., Cai Y., Wang W., Wang W., Wang C., Fang L., Liu Y., Liu J., 2024. Three dimensional velocity model and its tectonic implications at China Seismic Experimental Site, eastern margin of the Tibetan Plateau. Sci. China Earth Sci. 67 (7), 2268-2290.

[69]

Wu Z., Wang L., Che S., Li L., Zhang X., Shao Z., Ding Z., Li Y., Liu G., 2021. China seismic experimental site (CSES): planning and test. Reviews of Geophysics and Planetary Physics 52 (3), 348-352.

[70]

Xiao Z., Xu C., Huang Y., He X., Shao X., Chen Z., Xie C., Li T., Xu X., 2023. Analysis of spatial distribution of landslides triggered by the Ms 6.8 Luding earthquake in China on September 5, 2022. Geoenvironmental Disasters 10 (1), 3.

[71]

Xie Z., Ma W., 2022. Basin effect quantitation of four deep basins in Japan to explain the gap between empirical and numerical basin-depth effect models. Earthq. Eng. Struct. Dynam. 51 (13), 3047-3068.

[72]

Xu C., Xu X., Yao X., Dai F., 2014. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides 11, 441-461.

[73]

Xu C., Xu X., Zhou B., Shen L., 2019. Probability of coseismic landslides: a new generation of earthquake-triggered landslide hazard model. J. Eng. Geol. 27 (5), 1122-1130.

[74]

Xu C., Xu X., Shyu J.B.H., Gao M., Tan X., Ran Y., Zheng W., 2015. Landslides triggered by the 20 April 2013 Lushan, China, Mw 6.6 earthquake from field investigations and preliminary analyses. Landslides 12, 365-385.

[75]

Yang T., Fang L., Wu J., Monna S., Xu W., 2024. Double-difference tomography with a deep learning-based phase arrival weighting scheme and its application to the Anninghe-Xiaojiang fault zone. Seismol Res. Lett.

[76]

Yang Z., Pang B., Dong W., Li D., 2023. Spatial pattern and intensity mapping of coseismic landslides triggered by the 2022 luding earthquake in China. Rem. Sens. 15 (5), 1323.

[77]

Yang Z., Dai D., Zhang Y., Zhang X., Liu J., 2022. Rupture process and aftershock focal mechanisms of the 2022 M6. 8 Luding earthquake in Sichuan. Earthq. Sci. 35 (6), 474-484.

[78]

Yao H., 2020. Building the community velocity model in the Sichuan-Yunnan region, China: strategies and progresses. Sci. China Earth Sci. 63, 1425-1428.

[79]

Yin X., Li W., Xu Y., Zhang X., Cai J.a., 2024. Machine learning earthquake prediction method based on seismic activity images and its application in North China. Acta Seismologica Sinica 46 (2), 257-272.

[80]

Yu J., Bo T., Liu Y., Zhao G., Wang Y., Tan Q., 2022a. Implementation and application of localized Beijing earthquake emergency work platform based on Android mobile terminal. Earthq. Res. China.

[81]

Yu J., Zheng D., Pang J., Li C., Wang Y., Wang Y., Hao Y., Zhang P., 2022b. Cenozoic mountain building in eastern China and its correlation with reorganization of the Asian climate regime. Geology 50 (7), 859-863.

[82]

Yuan Y., Li H., Wei Y., Shi F., Wang Z., Hou J., Wang P., Xu Z., 2021. Probabilistic tsunami hazard assessment (PTHA) for southeast coast of Chinese Mainland and Taiwan Island. J. Geophys. Res. Solid Earth 126 (2), e2020JB020344.

[83]

Yuan Z., Li T., Su P., Sun H., Ha G., Guo P., Chen G., Thompson Jobe J., 2022. Large surface-rupture gaps and low surface fault slip of the 2021 Mw 7.4 Maduo earthquake along a low-activity strike-slip fault, Tibetan Plateau. Geophys. Res. Lett. 49 (6), e2021GL096874.

[84]

Zhang C., Zhou B., Ren Y., Wang X., Yu H., Zhang Y., Wu H., 2024. Strong motion characteristics of the 2022 Luding Ms6.8 earthquake, Sichuan province. World Earthq. Eng. 40 (1).

[85]

Zhang G., Li Y., Hu X., 2022a. Nucleation mechanism of the 2021 Mw 7.4 Maduo earthquake, NE Tibetan Plateau: insights from seismic tomography and numerical modeling. Tectonophysics 839, 229528.

[86]

Zhang H., Liu S., Yang D., Xu X., Yang S., Wang W., Pan Y., 2023a. Teleseismic traveltime tomography of the Andaman subduction zone. Tectonophysics 858, 229884.

[87]

Zhang P., Deng Q., Zhang Z., Li H., 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China. Scientia Sinica Terrae 43 (10), 1607-1620.

[88]

Zhang S., 2019. Statistical Seismological Problems Associated with CSEP-CN Testing Region in the Context of CSES [Ph. D. Thesis]. Institute of Geophysics, China Earthquake Administration, Beijing.

[89]

Zhang W., Liu A., Liu Y., Yu J., Tan Q., 2023b. Design and implementation of automatic trigger spftware for earthquake emergency based on EQIM. Earthq. Res. China 39 (2), 282-289.

[90]

Zhang X., Feng W., Du H., Samsonov S., Yi L., 2022b. Supershear rupture during the 2021 MW 7.4 Maduo, China, earthquake. Geophys. Res. Lett. 49 (6), e2022GL097984.

[91]

Zhang X., Shen Y., Chang M., Su W., Zhou P., Wang H., 2023c. Shaking table test research on seismic damage and failure of tunnel segmental lining crossing multiple rupture surfaces. Chin. J. Rock Mech. Eng. 42 (9), 2237-2252.

[92]

Zhao B., Hu K.-h., Yang Z.-j., Liu Q., Zou Q., Chen H.-y., Zhang B., Zhang W.-f., Zhu L., Su L.-j., 2022. Geomorphic and tectonic controls of landslides induced by the 2022 Luding earthquake. J. Mt. Sci. 19 (12), 3323-3345.

[93]

Zhao J.-J., Chen Q., Yang Y.-H., Xu Q., 2023. Coseismic faulting model and post-seismic surface motion of the 2023 Turkey-Syria earthquake doublet revealed by InSAR and GPS measurements. Rem. Sens. 15 (13), 3327.

PDF

66

Accesses

0

Citation

Detail

Sections
Recommended

/