Physical mechanisms of earthquake nucleation and foreshocks: Cascade triggering, aseismic slip, or fluid flows?

Zhigang Peng , Xinglin Lei

Earthquake Research Advances ›› 2025, Vol. 5 ›› Issue (2) : 32 -47.

PDF
Earthquake Research Advances ›› 2025, Vol. 5 ›› Issue (2) :32 -47. DOI: 10.1016/j.eqrea.2024.100349
research-article

Physical mechanisms of earthquake nucleation and foreshocks: Cascade triggering, aseismic slip, or fluid flows?

Author information +
History +
PDF

Abstract

Earthquakes are caused by the rapid slip along seismogenic faults. Whether large or small, there is inevitably a certain nucleation process involved before the dynamic rupture. At the same time, significant foreshock activity has been observed before some but not all large earthquakes. Understanding the nucleation process and foreshocks of earthquakes, especially large damaging ones, is crucial for accurate earthquake prediction and seismic hazard mitigation. The physical mechanism of earthquake nucleation and foreshock generation is still in debate. While the earthquake nucleation process is present in laboratory experiments and numerical simulations, it is difficult to observe such a process directly in the field. In addition, it is currently impossible to effectively distinguish foreshocks from ordinary earthquake sequences. In this article, we first summarize foreshock observations in the last decades and attempt to classify them into different types based on their temporal behaviors. Next, we present different mechanisms for earthquake nucleation and foreshocks that have been proposed so far. These physical models can be largely grouped into the following three categories: elastic stress triggering, aseismic slip, and fluid flows. We also review several recent studies of foreshock sequences before moderate to large earthquakes around the world, focusing on how different results/conclusions can be made by different datasets/methods. Finally, we offer some suggestions on how to move forward on the research topic of earthquake nucleation and foreshock mechanisms and their governing factors.

Keywords

Foreshocks / Earthquake swarms / 2024 Noto earthquake / Earthquake nucleation / Fluids / Aseismic slip / Haicheng earthquake

Cite this article

Download citation ▾
Zhigang Peng, Xinglin Lei. Physical mechanisms of earthquake nucleation and foreshocks: Cascade triggering, aseismic slip, or fluid flows?. Earthquake Research Advances, 2025, 5(2): 32-47 DOI:10.1016/j.eqrea.2024.100349

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zhigang Peng: Writing - review & editing, Writing - original draft, Visualization, Supervision, Funding acquisition, Conceptualization. Xinglin Lei: Writing - review & editing, Visualization, Resources, Formal analysis, Conceptualization.

Declaration of competing interest

Professor Zhigang Peng is the Deputy EIC of EQREA and was not involved in editorial review or the decision to publish this article.

Author agreement and acknowledgement

All authors agree for this publication. This manuscript benefits from useful discussions and comments with Zefeng Li, Shiqing Xu and Chan-grong He, which greatly improve its quality before submission. We also thank Dr. Kate H. Chen, Qi-Fu Chen, Greg McLaskey, Gerassimos Papa-dopoulos, Kelin Wang and two anonymous reviewers for their comments during the review/revision process. Z.P. is partially supported by U.S. National Science Foundation grant RISE-2425889.

References

[1]

Amezawa Y., Hiramatsu Y., Miyakawa A., Imanishi K., Otsubo M., 2023. Long-living earthquake swarm and intermittent seismicity in the northeastern tip of the Noto Peninsula, Japan. Geophys. Res. Lett. 50, e2022GL102670. https://doi.org/10.1029/2022GL102670.

[2]

Ampuero J.-P., Rubin A.M., 2008. Earthquake nucleation on rate and state faults - aging and slip laws. J. Geophys. Res. 113, B01302. https://doi.org/10.1029/2007JB005082.

[3]

Antonioli A., Belardinelli M.E., Bizzarri A., Vogfjord K.S., 2006. Evidence of instantaneous dynamic triggering during the seismic sequence of year 2000 in south Iceland. J. Geophys. Res. 111, B03302. https://doi.org/10.1029/2005JB003935.

[4]

Arrowsmith S.J., Trugman D.T., MacCarthy J., Bergen K.J., Lumley D., Magnani M.B., 2022. Big data seismology. Rev. Geophys. 60 (2), e2021RG000769. https://doi.org/10.1029/2021RG000769.

[5]

Atterholt J., Zhan Z., Yang Y., Zhu W., 2024. Imaging the Garlock Fault Zone with a fiber: A limited damage zone and hidden bimaterial contrast. J. Geophys. Res. Solid Earth 129, e2024JB028900. https://doi.org/10.1029/2024JB028900.

[6]

Avouac J.P., 2015. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annu. Rev. Earth Planet Sci. 43 (1), 233-271. https:// doi.org/10.1146/annurev-earth-060614-105302.

[7]

Bakun W.H., McEvilly T.V., 1979. Earthquakes near Parkfield, California: comparing the 1934 and 1966 sequences. Science 205 (4413), 1375-1377. https://doi.org/10.1126/science.205.4413.1375.

[8]

Bakun W.H., Lindh A.G., 1985. The Parkfield, California, earthquake prediction experiment. Science 229, 619-624. https://doi.org/10.1126/science.229.4714.619.

[9]

Bakun W.H., Aagaard B., Dost B., Ellsworth W.L., Hardebeck J.L., Harris R.A., Ji C., Johnston M.J., Langbein J., Lienkaemper J.J., Michael A.J., 2005. Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature 437 (7061), 969-974. https://doi.org/10.1038/nature04067.

[10]

Baltay A., Abercrombie R., Chu S., Taira T., 2024. The SCEC/USGS community stress drop validation study using the 2019 Ridgecrest earthquake sequence. Seismica 3 (1). https://doi.org/10.26443/seismica.v3i1.1009.

[11]

Barbour A.J., Norbeck J.H., Rubinstein J.L., 2017. The effects of varying injection rates in Osage County, Oklahoma, on the 2016 Mw 5.8 Pawnee earthquake. Seismol Res. Lett. 88, 1040-1053. https://doi.org/10.1785/0220170003.

[12]

Barcheck G., Brodsky E.E., Fulton P.M., King M.A., Siegfried M.R., Tulaczyk S., 2021. Migratory earthquake precursors are dominant on an ice stream fault. Science Advance 7 (6), eabd0105. https://doi.org/10.1126/sciadv.abd0105.

[13]

Barnhart W.D., Gold R.D., Hollingsworth J., 2020. Localized fault-zone dilatancy and surface inelasticity of the 2019 Ridgecrest earthquakes. Nat. Geosci. 13, 699-704. https://doi.org/10.1038/s41561-020-0628-8.

[14]

Beaucé E., Frank W.B., Romanenko A., 2018. Fast matched filter (FMF): an efficient seismic matched-filter search for both CPU and GPU architectures. Seismol Res. Lett. 89 (1), 165-172. https://doi.org/10.1785/0220170181.

[15]

Beaucé E., Poli P., Waldhauser F., Holtzman B., Scholz C., 2023. Enhanced tidal sensitivity of seismicity before the 2019 magnitude 7.1 Ridgecrest, California earthquake. Geophys. Res. Lett. 50, e2023GL104375. https://doi.org/10.1029/2023GL104375.

[16]

Bedford J., Moreno M., Schurr B., Bartsch M., Oncken O., 2015. Investigating the final seismic swarm before the Iquique-Pisagua 2014 Mw 8.1 by comparison of continuous GPS and seismic foreshock data. Geophys. Res. Lett. 42, 3820-3828. https://doi.org/10.1002/2015GL063953.

[17]

Beeler N.M., Lockner D.L., Hickman S.H., 2001. A simple stick-slip and creep-slip model for repeating earthquakes and its implication for microearthquakes at Parkfield. Bull. Seismol. Soc. Am. 91, 1797-1804. https://doi.org/10.1785/0120000096.

[18]

Bell A.F., Hernandez S., McCloskey J., Ruiz M., LaFemina P.C., Bean C.J., Möllhoff M., 2021. Dynamic earthquake triggering response tracks evolving unrest at Sierra Negra volcano, Galápagos Islands. Sci. Adv. 7 (39), eabh0894. https://doi.org/10.1126/sciadv.abh0894.

[19]

Ben-Zion Y., 2008. Collective behavior of earthquakes and faults: continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes. Rev. Geophys. 46, RG4006. https://doi.org/10.1029/2008RG000260.

[20]

Ben-Zion Y., Beroza G.C., Bohnhoff M., Gabriel A.A., Mai P.M., 2022. A grand challenge international infrastructure for earthquake science. Seismol Res. Lett. 93 (6), 2967-2968. https://doi.org/10.1785/0220220266.

[21]

Beroza G.C., Segou M., Mousavi S.M., 2021. Machine learning and earthquake forecasting-next steps. Nat. Commun. 12 (1), 4761. https://doi.org/10.1038/s41467-021-24952-6.

[22]

Bletery Q., Nocquet J.-M., 2023. The precursory phase of large earthquakes. Science 381 (6655), 297-301. https://doi.org/10.1126/science.adg2565,2023.

[23]

Bletery Q., Nocquet J.-M., 2025. Do large earthquakes start with a precursory phase of slow slip? Seismica 3 (2). https://doi.org/10.31223/X5RT3N.

[24]

Bolton D.C., Marone C., Saffer D., Trugman D.T., 2023. Foreshock properties illuminate nucleation processes of slow and fast laboratory earthquakes. Nat. Commun. 14, 3859. https://doi.org/10.1038/s41467-023-39399-0.

[25]

Bouchon M., Karabulut H., Aktar M., Ozalaybey S., Schmittbuhl J., Bouin M.-P., 2011. Extended nucleation of the 1999 Mw 7.6 Izmit earthquake. Science 331 (6019), 877-880. https://doi.org/10.1126/science.1197341.

[26]

Bouchon M., Durand V., Marsan D., Karabulut H., Schmittbuhl J., 2013. The long precursory phase of most large interplate earthquakes. Nat. Geosci. 6 (4), 299-302. https://doi.org/10.1038/ngeo1770.

[27]

Box G.E.P., 1980. Sampling and Bayes inference in scientific modelling and robustness. J. Roy Stat. Soc. Ser. A 143, 383-430. https://doi.org/10.2307/2982063.

[28]

Bradley K., Hubbard J., 2023. Earthquake precursors? not so fast. Earthquake Insights. https://doi.org/10.62481/310cc439.

[29]

Bradley K., Hubbard J., 2024a. Precursory slip before large earthquakes - signal or noise? Earthquake Insights. https://doi.org/10.62481/0ff960fa.

[30]

Bradley K., Hubbard J., 2024b. Does this machine learning model predict large earthquakes? Maybe not. Earthquake Insights. https://doi.org/10.62481/e64960d4.

[31]

Bürgmann R., 2018. The geophysics, geology and mechanics of slow fault slip. Earth Planet Sci. Lett. 495, 112-134. https://doi.org/10.1016/j.epsl.2018.04.062.

[32]

Cabrera L., Poli P., Frank W.B., 2022. Tracking the spatio-temporal evolution of foreshocks preceding the Mw 6.12009 L'Aquila earthquake. J. Geophys. Res. Solid Earth 127, e2021JB023888. https://doi.org/10.1029/2021JB023888.

[33]

Cattania C., Segall P., 2021. Precursory slow slip and foreshocks on rough faults. J. Geophys. Res. Solid Earth 126 (4), e2020JB020430. https://doi.org/10.1029/2020JB020430.

[34]

Chamberlain C.J., Hopp C.J., Boese C.M., Warren-Smith E., Chambers D., Chu S.X., Michailos K., Townend J., 2018. EQcorrscan: repeating and near-repeating earthquake detection and analysis in Python. Seismol Res. Lett. 89 (1), 173-181. https://doi.org/10.1785/0220170151.

[35]

Chen H., Han P., Hattori K., 2022. Recent advances and challenges in the seismoelectromagnetic study: a brief review. Rem. Sens. 14 (22), 5893. https://doi.org/10.3390/rs14225893.

[36]

Chen K.H., Bürgmann R., Nadeau R.M., Chen T., Lapusta N., 2010. Postseismic variations in seismic moment and recurrence interval of repeating earthquakes. Earth Planet Sci. Lett. 299 (1-2), 118-125. https://doi.org/10.1016/j.epsl.2010.08.027.

[37]

Chen L., Luo P., Fu H., Cai J., Liu X., Yang J., Li Y., Lei S., Shen B., Liu Z., 1997. Medium-term, short-term and impending predictions and features precursory anomalies for the M=7.3 earthquake happened at Menglian of Yunnan near the China-Burma border. J. Earthq. Pred. Res. 6 (1), 73-87.

[38]

Chen Q.F., Wang K., 2010. The 2008 Wenchuan earthquake and earthquake prediction in China. Bull. Seismol. Soc. Am. 100 (5B), 2840-2857. https://doi.org/10.1785/0120090314.

[39]

Chen Q.F., Li L., 2018. Deep deformation of the Longmenshan fault zone related to the 2008 Wenchuan earthquake. Chin. Sci. Bull. 63 (19), 1917-1933. https://doi.org/10.1360/n972018-00362.

[40]

Chen W., Neves M., Zhai Q., Daniels C., Adeboboye O., Jaume S., Peng Z., 2023. Preliminary results from a dense short-period seismic deployment around the source zone of the 1886 M 7 South Carolina earthquake. Seismol Res. Lett. 94 (5), 2479-2488. https://doi.org/10.1785/0220230085.

[41]

Chen X., Shearer P.M., 2016. Analysis of foreshock sequences in California and implications for earthquake triggering. Pure Appl. Geophys. 173, 133-152. https:// doi.org/10.1007/s00024-015-1103-0.

[42]

Chen, Y., Liu J., Ge H., 1999. Pattern characteristics of foreshock sequences. In: Wyss M., Shimazaki K., Ito A. (Eds.), Seismicity Patterns, Their Statistical Significance and Physical Meaning. PAGEOPH Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8677-2_10.

[43]

Cheng Y., Wong L.N.Y., 2016. Occurrence of foreshocks in large earthquakes with strikeslip rupturing. Bull. Seismol. Soc. Am. 106, 213-224. https://doi.org/10.1785/0120140338.

[44]

Christophersen A., Smith E.G., 2008. Foreshock rates from aftershock abundance. Bull. Seismol. Soc. Am. 98 (5), 2133-2148. https://doi.org/10.1785/0120060143.

[45]

Chuang L.Y., Peng Z., Lei X., Wang B., Liu J., Zhai Q., Tu H., 2023. Foreshocks of the 2010 Mw 6.7 Yushu, China Earthquake occurred near an extensional step-over. J. Geophys. Res. Solid Earth 128, e2022JB025176. https://doi.org/10.1029/2022JB025176.

[46]

Chung W.Y., Cipar J.J., 1983. Source modeling of the Hsingtai, China earthquakes of March 1966. Phys. Earth Planet. In. 33 (2), 111-125. https://doi.org/10.1016/0031-9201(83)90144-9.

[47]

Cocco M., Aretusini S., Cornelio C., Nielsen S.B., Spagnuolo E., Tinti E., Di Toro G., 2023. Fracture energy and breakdown work during earthquakes. Annu. Rev. Earth Planet Sci. 51 (1), 217-252. https://doi.org/10.1146/annurev-earth-071822100304.

[48]

Dascher-Cousineau K., Lay T., Brodsky E.E., 2020. Two foreshock sequences post Gulia and wiemer (2019). Seismol Res.Lett. 91 (5), 2843-2850. https://doi.org/10.1785/0220200082.

[49]

Dascher-Cousineau K., Shchur O., Brodsky E.E., Günnemann S., 2023. Using deep learning for flexible and scalable earthquake forecasting. Geophys. Res. Lett. 50, e2023GL103909. https://doi.org/10.1029/2023GL103909.

[50]

Deng Y., Peng Z., Liu-Zeng J., 2020. Systematic search for repeating earthquakes along the haiyuan fault system in northeastern Tibet. J. Geophys. Res. 125, e2020JB019583. https://doi.org/10.1029/2020JB019583.

[51]

Dieterich J.H., 1992. Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics 211 (1-4), 115-134. https://doi.org/10.1016/0040-1951(92)90055-B.

[52]

Dieterich J., 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. 99 (B2), 2601-2618. https://doi.org/10.1029/93JB02581.

[53]

Ding X., Xu S., Xie Y., van den Ende M., Premus J., Ampuero J.-P., 2023. The sharp turn: backward rupture branching during the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake. Seismica 2 (3). https://doi.org/10.26443/seismica.v2i3.1083.

[54]

Dodge D.A., Beroza G.C., Ellsworth W.L., 1996. Detailed observations of California foreshock sequences: implications for the earthquake initiation process. J. Geophys. Res. Solid Earth 101 (B10), 22371-22392. https://doi.org/10.1029/96JB02269.

[55]

Dong P., Chen R., Xia K., Yao W., Peng Z., Elsworth D., 2024. Earthquake delay and rupture velocity in near-field dynamic triggering dictated by stress-controlled nucleation. Seismological Society of America 94 (2A), 913-924. https://doi.org/10.1785/0220220264.

[56]

Ellsworth W.L., 2019. From foreshocks to mainshocks:mechanisms and implications for earthquake nucleation and rupture propagation. In:Mechanics of Earthquake Faulting. IOS Press, pp. 95-112. https://doi.org/10.3254/978-1-61499-979-9-95.

[57]

Ellsworth W.L., Giardini D., Townend J., Ge S., Shimamoto T., 2019. Triggering of the pohang, korea, earthquake (Mw 5.5) by enhanced geothermal system stimulation. Seismol Res. Lett. 90 (5), 1844-1858. https://doi.org/10.1785/0220190102.

[58]

Ellsworth W.L., Bulut F., 2018. Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nat. Geosci. 11 (7), 531-535. https://doi.org/10.1038/s41561-018-0145-1.

[59]

Felzer K.R., Abercrombie R.E., Ekström G., 2004. A common origin for aftershocks, foreshocks, and multiplets. Bull. Seismol. Soc. Am. 94 (1), 88-98. https://doi.org/10.1785/0120030069.

[60]

Felzer K.R., Page M., Michael A., 2015. Artificial seismic acceleration. Nature Geosci 8, 82-83. https://doi.org/10.1038/ngeo2358.

[61]

Field E.H., 2015. All models are wrong, but some are useful. Seismol Res. Lett. 86 (2A), 291-293. https://doi.org/10.1785/02201401213.

[62]

Freed A.M., 2005. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet Sci. 33 (1), 335-367. https://doi.org/10.1146/annurev.earth.33.092203.122505.

[63]

Freund F., 2011. Pre-earthquake signals: underlying physical processes. J. Asian Earth Sci. 41 (4-5), 383-400. https://doi.org/10.1016/j.jseaes.2010.03.009.

[64]

Fukushima Y., Nishikawa T., Kano Y., 2023. High probability of successive occurrence of Nankai megathrust earthquakes. Sci. Rep. 13, 63. https://doi.org/10.1038/s41598-022-26455-w.

[65]

Gabriel A.A., Garagash D.I., Palgunadi K.H., Mai P.M., 2024. Fault size-dependent fracture energy explains multiscale seismicity and cascading earthquakes. Science 385 (6707), eadj9587. https://doi.org/10.1126/science.adj9587.

[66]

Gao D., Kao H., Wang B., 2021. Misconception of waveform similarity in the identification of repeating earthquakes. Geophys. Res. Lett. 48, e2021GL092815. https://doi.org/10.1029/2021GL092815.

[67]

Ge S., Saar M.O., 2022. Induced seismicity during geoenergy development-a hydromechanical perspective. J. Geophys. Res. Solid Earth 127, e2021JB023141. https://doi.org/10.1029/2021JB023141.

[68]

Girona T., Drymoni K., 2024. Abnormal low-magnitude seismicity preceding largemagnitude earthquakes. Nat. Commun. 15, 7429. https://doi.org/10.1038/s41467-024-51596-z.

[69]

Goebel T.H., Schuster V., Kwiatek G., Pandey K., Dresen G., 2024. A laboratory perspective on accelerating preparatory processes before earthquakes and implications for foreshock detectability . Nat. Commun. 15 (1), 5588. https://doi.org/10.1038/s41467-024-49959-7.

[70]

Goltz J.D., 2015. A further note on operational earthquake forecasting: an emergency management perspective. Seismol Res. Lett. 86 (5), 1231-1233. https://doi.org/10.1785/0220150080.

[71]

Guérin-Marthe S., Nielsen S., Bird R., Giani S., Di Toro G., 2019. Earthquake nucleation size: Evidence of loading rate dependence in laboratory faults. J. Geophys. Res. Solid Earth 124 (1), 689-708. https://doi.org/10.1029/2018JB016803.

[72]

Gulia L., Wiemer S., 2019. Real-time discrimination of earthquake foreshocks and aftershocks. Nature 574, 193-199. https://doi.org/10.1038/s41586-019-1606-4.

[73]

Gutenberg B., Richter C.F., 1944. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 4, 185-188. https://doi.org/10.1785/BSSA0340040185.

[74]

Hauksson E., Stock J., Hutton K., Yang W., Vidal-Villegas J.A., Kanamori H., 2011. The 2010 M w 7.2 El Mayor-Cucapah earthquake sequence, Baja California, Mexico and southernmost California, USA: active seismotectonics along the Mexican pacific margin. Pure Appl. Geophys. 168, 1255-1277. https://doi.org/10.1007/s00024-010-0209-7.

[75]

Hardebeck J.L., 2021. Spatial clustering of aftershocks impacts the performance of physics-based earthquake forecasting models. J. Geophys. Res. Solid Earth 126, e2020JB020824. https://doi.org/10.1029/2020JB020824.

[76]

Hardebeck J.L., Llenos A.L., Michael A.J., Page M.T., Schneider M., van der Elst N.J., 2024. Aftershock forecasting. Annu. Rev. Earth Planet Sci. 52. https://doi.org/10.1146/annurev-earth-040522-102129.

[77]

Harris R.A., 2017. Large earthquakes and creeping faults. Rev. Geophys. 55 (1), 169-198. https://doi.org/10.1002/2016RG000539.

[78]

He C., Zhang L., Liu P., Chen Q.-F., 2023. Characterizing the final stage of simulated earthquake nucleation governed by rate-and-state fault friction. J. Geophys. Res. Solid Earth 128, e2023JB026422. https://doi.org/10.1029/2023JB026422.

[79]

Helmstetter A., Sornette D., Grasso J.R., 2003. Mainshocks are aftershocks of conditional foreshocks: how do foreshock statistical properties emerge from aftershock laws. J. Geophys. Res. Solid Earth 108 (B1), 2046. https://doi.org/10.1029/2002JB001991.

[80]

Hill D.P., Prejean S., 2015. Dynamic triggering. In: Kanamori H. (Ed.), Treatise on Geophysics, second ed., vol. 4. Elsevier, Amsterdam, The Netherlands. https:// doi.org/10.1016/B978-0-444-53802-4.00078-6.

[81]

Hirose F., Miyaoka K., Hayashimoto N., Yamazaki T., Nakamura M., 2011. Outline of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) - seismicity: foreshocks, mainshock, aftershocks, and induced activity-. Earth Planets Space 63, 513-518. https://doi.org/10.5047/eps.2011.05.019.

[82]

Hirose H., Kato A., Kimura T., 2024. Did short-term preseismic crustal deformation precede the 2011 great Tohoku-Oki earthquake? An examination of stacked tilt records. Geophys. Res. Lett. 51 (12), e2024GL109384. https://doi.org/10.1029/2024GL109384.

[83]

Huang F., Li M., Ma Y., Han Y., Tian L., Yan W., Li X., 2017. Studies on earthquake precursors in China: a review for recent 50 years. Geodesy and Geodynamics 8 (1), 1-12. https://doi.org/10.1016/j.geog.2016.12.002.

[84]

Huang H., Meng L., Bürgmann R., Wang W., Wang K., 2020. Spatio-temporal foreshock evolution of the 2019 M 6.4 and M 7.1 Ridgecrest, California earthquakes. Earth Planet Sci. Lett. 551, 116582. https://doi.org/10.1016/j.epsl.2020.116582.

[85]

Huang Y., Li H., Ma Y., Ma J., 2023. Long-term spatial-temporal evolution of seismicity of the 2010 Ms 7.1 Yushu, Qinghai, China earth- quake. IEEE Trans. Geosci. Rem. Sens. 61, 1-9. https://doi.org/10.1109/TGRS.2022.3231878.

[86]

Hudnut K.W., Seeber L., Pacheco J., 1989. Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, southern California. Geophys. Res. Lett. 16 (2), 199-202. https://doi.org/10.1029/GL016i002p00199.

[87]

Ide S., 2019. Frequent observations of identical onsets of large and small earthquakes. Nature 573, 112-116. https://doi.org/10.1038/s41586-019-1508-5.

[88]

Ide S., Beroza G.C., 2023. Slow earthquake scaling reconsidered as a boundary between distinct modes of rupture propagation. Proc. Natl. Acad. Sci. USA 120 (32), e2222102120. https://doi.org/10.1073/pnas.2222102120.

[89]

Im K., Avouac J.-P., 2023. Cascading foreshocks, aftershocks and earthquake swarms in a discrete fault network. Geophys. J. Int. 235 (1), 831-852. https://doi.org/10.1093/gji/ggad278.

[90]

Ishikawa Y., Bai L., 2024. The 2024 Mj7.6 Noto Peninsula, Japan earthquake caused by the fluid flow in the crust. Earthquake Research Advances 2024, 100292. https:// doi.org/10.1016/j.eqrea.2024.100292,547.

[91]

Ito R., Kaneko Y., 2023. Physical mechanism for a temporal decrease of the GutenbergRichter b-value prior to a large earthquake. J. Geophys. Res. Solid Earth 128, e2023JB027413. https://doi.org/10.1029/2023JB027413.

[92]

Ito Y., Hino R., Kido M., Fujimoto H., Osada Y., Inazu D., Ohta Y., Iinuma T., Ohzono M., Miura S., Mishina M., 2013. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophysics 600, 14-26. https://doi.org/10.1016/j.tecto.2012.08.022.

[93]

Itoh Y., Socquet A., Radiguet M., 2023. Largest aftershock nucleation driven by afterslip during the 2014 Iquique sequence. Geophys. Res. Lett. 50, e2023GL104852. https:// doi.org/10.1029/2023GL104852.

[94]

Jansen G., Ruhl C.J., Miller S.A., 2019. Fluid pressure-triggered foreshock sequence of the 2008 Mogul earthquake sequence: insights from stress inversion and numerical modeling. J. Geophys. Res. Solid Earth 124, 3744-3765. https://doi.org/10.1029/2018JB015897.

[95]

Jia K., Zhou S., Zhuang J., Jiang C., Guo Y., Gao Z., Gao S., Ogata Y., Song X., 2020. Nonstationary background seismicity rate and evolution of stress changes in the changning salt mining and shale-gas hydraulic fracturing region, Sichuan Basin, China. Seismol Res. Lett. 91 (4), 2170-2181. https://doi.org/10.1785/0220200092.

[96]

Jolivet R., Frank W.B., 2020. The transient and intermittent nature of slow slip. AGU Advances 1, e2019AV000126. https://doi.org/10.1029/2019AV000126.

[97]

Jones L.M., Wang B., Xu S., Fitch T.J., 1982. The foreshock sequence of the february 4, 1975, Haicheng earthquake (M=7.3). J. Geophys. Res. 87 (B6), 4575-4584. https:// doi.org/10.1029/JB087iB06p04575.

[98]

Jordan T.H., Jones L.M., 2010. Operational earthquake forecasting: some thoughts on why and how. Seismol Res. Lett. 81, 571-574. https://doi.org/10.1785/gssrl.81.4.571.

[99]

Jordan T.H., Chen Y.-T., Gasparini P., Madariaga R., Main I., Marzocchi W., Papadopoulos G., Sobolev G., Yamaoka K., Zschau J., 2011. Operational earthquake forecasting: state of knowledge and guidelines for implementation, final report of the international commission on earthquake forecasting for civil protection. Ann. Geophys. 54 (4), 315-391. https://doi.org/10.4401/ag-5350.

[100]

Jordan T.H., Marzocchi W., Michael A.J., Gerstenberger M.C., 2014. Operational earthquake forecasting can enhance earthquake preparedness. Seismol Res. Lett. 85 (5), 955-959. https://doi.org/10.1785/0220140143.

[101]

Kanamori, H., 1981. The nature of seismicity patterns before large earthquakes. In: Simpson D.W., Richards, P.G. (Eds.), Earthquake Prediction. https://doi.org/10.1029/ME004p0001.

[102]

Kanamori H., 2003. Earthquake prediction: an overview. Int. Geophys. 81, 1205-1216. https://doi.org/10.1016/S0074-6142(03)80186-9.

[103]

Kanamori H., Brodsky E.E., 2004. The physics of earthquakes. Rep. Prog. Phys. 67 (8), 1429. https://doi.org/10.1088/0034-4885/67/8/R03.

[104]

Kaneko Y., Lapusta N., 2008. Variability of earthquake nucle-ation in continuum models of rate-and-state faults and implications for aftershock rates. J. Geophys. Res. 113, B12312. https://doi.org/10.1029/2007JB005154.

[105]

Kato A., 2019. The evolution of fault slip rate prior to earthquake:the role of slow-and fast-slip modes. In: Mechanics of Earthquake Faulting, vols. 53-80. IOS Press. https:// doi.org/10.3254/978-1-61499-979-9-53.

[106]

Kato A., 2024. Implications of fault-valve behavior from immediate aftershocks following the 2023 Mj6.5 earthquake beneath the Noto Peninsula, central Japan. Geophys. Res. Lett. 51, e2023GL106444. https://doi.org/10.1029/2023GL106444.

[107]

Kato A., Obara K., Igarashi T., Tsuruoka H., Nakagawa S., Hirata N., 2012. Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki earthquake. Science 335 (6069), 705-708. https://doi.org/10.1126/science.1215141.

[108]

Kato A., Obara K., 2014. Step-like migration of early aftershocks following the 2007 Mw 6.7 Noto-Hanto earthquake, Japan. Geophys. Res. Lett. 41, 3864-3869. https:// doi.org/10.1002/2014GL060427.

[109]

Kato A., Nakagawa S., 2014. Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake. Geophys. Res. Lett. 41 (15), 5420-5427. https://doi.org/10.1002/2014GL061138.

[110]

Kato A., Fukuda J., Nakagawa S., Obara K., 2016. Foreshock migration preceding the 2016 Mw 7.0 Kumamoto earthquake, Japan. Geophys. Res. Lett. 43, 8945-8953. https://doi.org/10.1002/2016GL070079.

[111]

Kato A., Ben-Zion Y., 2021. The generation of large earthquakes. Nat. Rev. Earth Environ. 2, 26-39. https://doi.org/10.1038/s43017-020-00108-w.

[112]

Kılıç T., Kartal R.F., Kadirioğlu F.T., Bohnhoff M., Nurlu M., Acarel D., Garzon P.M., Dresen G., Özsarac V., Malin P.E., 2020. Geophysical borehole observatory at the North Anatolian Fault in the Eastern Sea of Marmara (GONAF): initial results. J. Seismol. 24, 375-395. https://doi.org/10.1007/s10950-020-09907-6.

[113]

Kong Q., Trugman D.T., Ross Z.E., Bianco M.J., Meade B.J., Gerstoft P., 2019. Machine learning in seismology: Turning data into insights. Seismol Res. Lett. 90 (1), 3-14. https://doi.org/10.1785/0220180259.

[114]

Kwiatek G., Martínez-Garzón P., Becker D., Dresen G., Cotton F., Beroza G.C., Acarel D., Ergintav S., Bohnhoff M., 2023. Months-long seismicity transients preceding the 2023MW 7.8 Kahramanmaraş earthquake, Türkiye. Nat. Commun. 14 (1), 7534. https://doi.org/10.1038/s41467-023-42419-8.

[115]

Langbein J., Borcherdt R., Dreger D., Fletcher J., Hardebeck J.L., Hellweg M., Ji C., Johnston M., Murray J.R., Nadeau R., Rymer M.J., 2005. Preliminary report on the 28 september 2004, M 6.0 Parkfield, California earthquake. Seismol Res. Lett. 76 (1), 10-26. https://doi.org/10.1785/gssrl.76.1.10.

[116]

Lee J., Tsai V.C., Hirth G., Chatterjee A., Trugman D.T., 2024. Fault-network geometry influences earthquake frictional behaviour. Nature 631, 106-110. https://doi.org/10.1038/s41586-024-07518-6.

[117]

Lei X., 2003. How do asperities fracture? An experimental study of unbroken asperities. Earth Planet Sci. Lett. 213, 347-359. https://doi.org/10.1016/S0012-821X(03)00328-5.

[118]

Lei X., 2024. Fluid-driven Fault Nucleation, Rupture Processes, and Permeability Evolution in Oshima Granite-Preliminary Results and Acoustic Emission Datasets. Geohazard Mechanics. https://doi.org/10.1016/j.ghm.2024.04.003.

[119]

Lei X., Ma S., 2014. Laboratory acoustic emission study for earthquake generation process. Earthq. Sci. 27, 627-646. https://doi.org/10.1007/s11589-014-0103-y.

[120]

Lei X., Wang Z., Su J., 2019. The december 2018 ML 5.7 and january 2019 ML 5.3 earthquakes in south Sichuan Basin induced by shale gas hydraulic fracturing. Seismol Res. Lett. 90, 1099-1110. https://doi.org/10.1785/0220190029.

[121]

Lei X., Su J., Wang Z., 2020. Growing seismicity in the Sichuan Basin and its association with industrial activities. Sci. China Earth Sci. 63, 1633-1660. https://doi.org/10.1007/s11430-020-9646-x.

[122]

Lei X., Wang Z., Ma S., He C., 2021. A preliminary study on the characteristics and mechanism of the May 2021 MS 6.4 Yangbi earthquake sequence, Yunnan, China. Acta Seismologica Sinica 43 (3), 261. https://doi.org/10.11939/jass.20210100.

[123]

Lei X., Wang Z., Ma S., He C., 2024. Step-over of strike-slip faults and overpressure fluid favor occurrence of foreshocks: insights from the 1975 Haicheng fore-mainaftershock sequence, China. Earthq. Res. Adv. 100237. https://doi.org/10.1016/j.eqrea.2023.100237.

[124]

Li C., Peng Z., Yao D., Meng X., Zhai Q., 2023. Temporal changes of seismicity in Salton Sea Geothermal Field due to distant earthquakes and geothermal productions. Geophys. J. Int. 232 (1), 287-299. https://doi.org/10.1093/gji/ggac324.

[125]

Li G., Ben-Zion Y., 2024. Multi-scale seismic imaging of the Ridgecrest, CA, region with waveform inversion of regional and dense array data. J. Geophys. Res. Solid Earth 129, e2023JB028149. https://doi.org/10.1029/2023JB028149.

[126]

Li H., 1996. China's campaign to predict quakes. Science 273, 1484-1486. https:// doi.org/10.1126/science.273.5281.1484.

[127]

Li L., Chen Q.f., Niu F., Su J., 2011. Deep slip rates along the Longmen Shan fault zone estimated from repeating microearthquakes. J. Geophys. Res. Solid Earth 116, B09310. https://doi.org/10.1029/2011JB008406.

[128]

Li L., Wang B., Peng Z., Hou J., Wang F., 2024a. Statistical features of seismicity associated with large earthquakes on the Chinese continent between 2008 and 2019 based on newly detected catalogs. Seismol Res. Lett. 95, 1701-1717. https://doi.org/10.1785/0220230189.

[129]

Li M., Niemeijer A., van Dinther Y., 2024b. Earthquake nucleation and slip behavior altered by stochastic normal stress heterogeneity. ESS Open Archive. https://doi.org/10.22541/essoar.172108738.88404748/v1.

[130]

Lin C.H., 2009. Foreshock characteristics in Taiwan: potential earthquake warning. J. Asian Earth Sci. 34 (5), 655-662. https://doi.org/10.1016/j.jseaes.2008.09.006.

[131]

Lin R., 2003. Predictions and social response capacities in face of the 1995 Menglian earthquake (M=7.3):an overview. Early Warning Systems for Natural Disaster Reduction. Springer, Berlin, Heidelberg, pp. 481-486. https://doi.org/10.1007/978-3-642-55903-7_63.

[132]

Lindsey N.J., Martin E.R., 2021. Fiber-optic seismology. Annu. Rev. Earth Planet Sci. 49 (1), 309-336. https://doi.org/10.1146/annurev-earth-072420-065213.

[133]

Liu M., Li H., Li L., Zhang M., Wang W., 2022. Multistage nucleation of the 2021 Yangbi MS 6.4 earthquake, Yunnan, China and its foreshocks. J. Geophys. Res. Solid Earth 127, e2022JB024091. https://doi.org/10.1029/2022JB024091.

[134]

Liu Y., McGuire J.J., Behn M.D., 2020. Aseismic Transient Slip on the Gofar Transform Fault, East Pacific Rise. Proceedings of the National Academy of Sciences 117 (19), 10188-10194. https://doi.org/10.1073/pnas.1913625117.

[135]

Lu C., Zhou X., Chen Z., Liu Z., Hu L., Sun F., Martinelli G., Li Y., 2023. Earthquake geochemical scientific expedition and research. Earthquake Research Advances 3 (4), 100239. https://doi.org/10.1016/j.eqrea.2023.100239.

[136]

Ma K.F., von Specht S., Kuo L.W., Huang H.H., Lin C.R., Lin C.J., Ku C.S., Wu E.S., Wang C.Y., Chang W.Y., Jousset P., 2024. Broad-band strain amplification in an asymmetric fault zone observed from borehole optical fiber and core. Communications Earth & Environment 5 (1), 402. https://doi.org/10.1038/s43247-024-01558-6.

[137]

Maeda K., 1999. Time distribution of immediate foreshocks obtained by a stacking method. Pure Appl. Geophys. 155, 381-394. https://doi.org/10.1007/s000240050270.

[138]

Mancini S., Segou M., Werner M.J., Cattania C., 2019. Improving physics-based aftershock forecasts during the 2016-2017 Central Italy earthquake cascade. J. Geophys. Res. Solid Earth 124, 8626-8643. https://doi.org/10.1029/2019JB017874.

[139]

Manganiello E., Herrmann M., Marzocchi W., 2023. New physical implications from revisiting foreshock activity in southern California. Geophys. Res. Lett. 50, e2022GL098737. https://doi.org/10.1029/2022GL098737.

[140]

Martínez-Garzón P., Poli P., 2024. Cascade and preslip models oversimplify the complexity of earthquake preparation in nature. Commun. Earth Environ. 5, 120. https://doi.org/10.1038/s43247-024-01285-y.

[141]

Marty S., Schubnel A., Bhat H.S., Aubry J., Fukuyama E., Latour S., Nielsen S., Madariaga R., 2023. Nucleation of laboratory earthquakes: quantitative analysis and scalings. J. Geophys. Res. Solid Earth 128, e2022JB026294. https://doi.org/10.1029/2022JB026294.

[142]

Materna K., Taira T., Bürgmann R., 2018. Aseismic transform fault slip at the Mendocino Triple Junction from characteristically repeating earthquakes. Geophys. Res. Lett. 45, 699-707. https://doi.org/10.1002/2017GL075899.

[143]

McGuire J.J., Boettcher M.S., Jordan T.H., 2005. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults. Nature 434, 457-461. https://doi.org/10.1038/nature03377.

[144]

McLaskey G.C., 2019. Earthquake initiation from laboratory observations and implications for foreshocks. J. Geophys. Res. Solid Earth 124 (12). https://doi.org/10.1029/2019JB018363,882-12,904.

[145]

McLaskey G.C., Lockner D.A., 2014. Preslip and cascade processes initiating laboratory stick slip. J. Geophys. Res. Solid Earth 119, 6323-6336. https://doi.org/10.1002/2014JB011220.

[146]

Meng X., Peng Z., 2014. Seismicity rate changes in the san jacinto fault zone and the salton Sea geothermal field following the 2010 Mw7.2 El Mayor-Cucapah earthquake. Geophys. J. Int. 197 (3), 1750-1762. https://doi.org/10.1093/gji/ggu085.

[147]

Meng Q., Ni S., Peng Z., 2021. Complex source behaviors and spatio-temporal evolution of seismicity during the 2015-2016 earthquake sequence in Cushing. Oklahoma, J. Geophys. Res. 126, e2021JB022168. https://doi.org/10.1029/2021JB022168.

[148]

Meng L., Huang H., Bürgmann R., Ampuero J.P., Strader A., 2015. Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence. Earth Planet Sci. Lett. 411, 177-187. https://doi.org/10.1016/j.epsl.2014.11.041.

[149]

Mignan A., 2014. The debate on the prognostic value of earthquake foreshocks: a metaanalysis. Sci. Rep. 4 (1), 4099. https://doi.org/10.1038/srep04099.

[150]

Mitchell T.M., Faulkner D.R., 2009. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: a field study from the Atacama fault system, northern Chile. J. Struct. Geol. 31 (8), 802-816. https://doi.org/10.1016/j.jsg.2009.05.002.

[151]

Mizrahi L., Dallo I., van der Elst N.J., Christophersen A., Spassiani I., Werner M.J., Iturrieta P., Bayona J.A., Iervolino I., Schneider M., Page M.T., 2024. Developing, testing, and communicating earthquake forecasts: current practices and future directions. Rev. Geophys. 62, e2023RG000823. https://doi.org/10.1029/2023RG000823.

[152]

Moein M.J., Langenbruch C., Schultz R., Grigoli F., Ellsworth W.L., Wang R., Rinaldi A.P., Shapiro S., 2023. The physical mechanisms of induced earthquakes. Nat. Rev. Earth Environ. 4 (12), 847-863. https://doi.org/10.1038/s43017-023-00497-8.

[153]

Mogi K., 1963. Some discussions on aftershocks, foreshocks and earthquake swarms-the fracture of a semi finite body caused by an inner stress origin and its relation to the earthquake phenomena. Bull. Earthq. Res. Inst. 41, 615-658.

[154]

Mogi K., 1985. Earthquake Prediction. Academic Press, Dordrecht.

[155]

Moore J., McLennan J., Allis R., Pankow K., Simmons S., Podgorney R., Wannamaker P., Bartley J., Jones C., Rickard W., 2019. The Utah Frontier Observatory for Research in Geothermal Energy (FORGE): an international laboratory for enhanced geothermal system technology development. In:44th Workshop on Geothermal Reservoir Engineering. Stanford University, pp. 11-13.

[156]

Mousavi S.M., Beroza G.C., 2023. Machine learning in earthquake seismology. Annu. Rev. Earth Planet Sci. 51 (1), 105-129. https://doi.org/10.1146/annurev-earth-071822-100323.

[157]

Moutote L., Marsan D., Lengliné O., Duputel Z., 2021. Rare occurrences of noncascading foreshock activity in Southern California. Geophys. Res. Lett. 48, e2020GL091757. https://doi.org/10.1029/2020GL091757.

[158]

Moutote L., Itoh Y., Lengliné O., Duputel Z., Socquet A., 2023. Evidence of a transient aseismic slip driving the 2017 Valparaiso earthquake sequence, from foreshocks to aftershocks. J. Geophys. Res. Solid Earth 128, e2023JB026603. https://doi.org/10.1029/2023JB026603.

[159]

Münchmeyer J., Leser U., Tilmann F., 2022. A probabilistic view on rupture predictability: all earthquakes evolve similarly. Geophys. Res. Lett. 49, e2022GL098344. https://doi.org/10.1029/2022GL098344.

[160]

Nadeau R.M., McEvilly T.V., 1999. Fault slip rates at depth from recurrence intervals of repeating microearthquakes. Science 285, 718-721. https://doi.org/10.1126/science.285.5428.718.

[161]

Nadeau R.M., Guilhem A., 2009. Nonvolcanic tremor evolution and the san simeon and Parkfield, California, earthquakes. science 325 (5937), 191-193. https://doi.org/10.1126/science.1174155.

[162]

Nakajima J., 2022. Crustal structure beneath earthquake swarm in the Noto peninsula, Japan. 630 Earth Planets Space 74, 160. https://doi.org/10.1186/s40623-022-01719-x.

[163]

Nakajima J., Hasegawa A., 2023. Prevalence of repeating earthquakes in the continental crust and subducting slabs: triggering of earthquakes by aseismic slip. J. Geophys. Res. Solid Earth 128, e2022JB024667. https://doi.org/10.1029/2022JB024667.

[164]

Neves M., Peng Z., Lin G., 2023. A high-resolution earthquake catalog for the 2004 M6 Parkfield earthquake sequence using a matched filter technique. Seismol Res. Lett. 94 (1), 507-521. https://doi.org/10.1785/0220220206.

[165]

Neves M., Chuang L.Y., Li W., Peng Z., Figueiredo P.M., Ni S., 2024. Complex rupture dynamics of the extremely shallow August 2020 M5. 1 Sparta, North Carolina earthquake. Communications Earth & Environment 5 (1), 163. https://doi.org/10.1038/s43247-024-01316-8.

[166]

Niu F., Silver P.G., Daley T.M., Cheng X., Majer E.L., 2008. Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site. Nature 454 (7201), 204-208. https://doi.org/10.1038/nature07111.

[167]

Ni S., Wang W., Li L., 2010. The April 14th, 2010 Yushu earthquake, a devastating earthquake with foreshocks. Science China. Earth Sci. 53 (6), 791. https://doi.org/10.1007/s11430-010-0083-2.

[168]

Nishimura T., Hiramatsu Y., Ohta Y., 2023. Episodic transient deformation revealed by the analysis of multiple GNSS networks in the Noto Peninsula, central Japan. Sci. Rep. 13, 8381. https://doi.org/10.1038/s41598-023-35459-z.

[169]

Noda H., Nakatani M., Hori T., 2013. Large nucleation before large earthquakes is sometimes skipped due to cascade-up-implications from a rate and state simulation of faults with hierarchical asperities. J. Geophys. Res. Solid Earth 118, 2924-2952. https://doi.org/10.1002/jgrb.50211.

[170]

Ogata Y., 1988. Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc. 83, 9-27. https://doi.org/10.2307/2288914.

[171]

Ogata Y., 2017. Statistics of earthquake activity: models and methods for earthquake predictability studies. Annu. Rev. Earth Planet Sci. 45 (1), 497-527. https://doi.org/10.1146/annurev-earth-063016-015918.

[172]

Ogata Y., Utsu T., Katsura K., 1996. Statistical discrimination of foreshocks from other earthquake clusters. Geophys. J. Int. 127 (1), 17-30. https://doi.org/10.1111/j.1365-246X.1996.tb01531.x.

[173]

Ogata Y., 2005. Detection of anomalous seismicity as a stress change sensor. J. Geophys. Res. Solid Earth 110 (B5). https://doi.org/10.1029/2004JB003245.

[174]

Ogata Y., 2007. Seismicity and geodetic anomalies in a wide area preceding the Niigata-Ken-Chuetsu earthquake of 23 October 2004, central Japan. J. Geophys. Res. Solid Earth 112 (B10). https://doi.org/10.1029/2006JB004697.

[175]

Ohnaka M., 1984. A sequence of seismic activity in the Kanto area precursory to the 1923 Kanto earthquake. Pure Appl. Geophys. 122, 848-862. https://doi.org/10.1007/BF00876388.

[176]

Ohnaka, M., 1992. Earthquake source nucleation:a physical model for short-term precursors. In: Mikumo T., Aki K., Ohnaka M., Ruff L.J., Spudich P.K.P. (Eds.), Earthquake Source Physics and Earthquake Precursors, vol. 211, pp. 149-178. https://doi.org/10.1016/0040-1951(92)90057-D.Tectonophysics.

[177]

Ohnaka M., 2013. The Physics of Rock Failure and Earthquakes. Cambridge University Press.

[178]

Ohnaka M., Shen L., 1999. Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupturing surfaces. J. Geophys. Res. 104 (B1), 817-844. https://doi.org/10.1029/1998JB900007.

[179]

Okubo P.G., Dieterich J.H., 1984. Effects of physical fault properties on frictional instabilities produced on simulated faults. J. Geophys. Res. 89 (B7), 5817-5827. https://doi.org/10.1029/jb089ib07p05817.

[180]

Omori F., 1894. On the aftershocks of earthquakes. In: Journal of the College of Science, vol. 7. Imperial University of Tokyo, pp. 111-120.

[181]

Ostermeijer G.A., Mitchell T.M., Aben F.M., Dorsey M.T., Browning J., Rockwell T.K., Fletcher J.M., Ostermeijer F., 2020. Damage zone heterogeneity on seismogenic faults in crystalline rock; a field study of the Borrego Fault, Baja California. J. Struct. Geol. 137, 104016. https://doi.org/10.1016/j.jsg.2020.104016.

[182]

Ouzounov D., Pulinets S., Hattori K., Taylor P., 2018. Pre-earthquake Processes: a Multidisciplinary Approach to Earthquake Prediction Studies, vol. 234. John Wiley & Sons. https://doi.org/10.1002/9781119156949.

[183]

Ozacar A.A., Beck S.L., 2004. The 2002 Denali fault and 2001 Kunlun fault earthquakes: complex rupture processes of two large strike-slip events. Bull. Seismol. Soc. Am. 94 (6B), S278-S292. https://doi.org/10.1785/0120040604.

[184]

Papadopoulos G.A., Agalos A., Minadakis G., Triantafyllou I., Krassakis P., 2020. ShortTerm Foreshocks as Key Information for Mainshock Timing and Rupture: The Mw6.8 25 October 2018 Zakynthos Earthquake, Hellenic Subduction Zone. Sensors 20 (19), 5681. https://doi.org/10.3390/s20195681.

[185]

Peng Z., Vidale J.E., Marone C., Rubin A., 2005. Systematic variations in moment with recurrence interval of repeating aftershocks. Geophys. Res. Lett. 32 (15), L15301. https://doi.org/10.1029/2005GL022626.

[186]

Peng Z., Zhao P., 2009. Migration of early aftershocks following the 2004 Parkfield earthquake. Nature Geosci 2, 877-881. https://doi.org/10.1038/ngeo697.

[187]

Peng Z., Gomberg J., 2010. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat. Geosci. 3 (9), 599-607. https://doi.org/10.1038/ngeo940.

[188]

Peng Z., Lei X., Wang Q.-Y., Wang D., Mach P., Yao D., Kato A., Obara K., Campillo M., 2025. The evolution process between the earthquake swarm beneath the Noto peninsula, Central Japan and the 2024 M 7.6 Noto hanto earthquake sequence. Earthquake Research Advances 5 (1), 100332. https://doi.org/10.1016/j.eqrea.2024.100332.

[189]

Perfettini H., Frank W.B., Marsan D., Bouchon M., 2018. A model of aftershock migration driven by afterslip. Geophys. Res. Lett. 45, 2283-2293. https://doi.org/10.1002/2017GL076287.

[190]

Petrillo G., Kumazawa T., Napolitano F., Capuano P., Zhuang J., 2024. Fluids-triggered swarm sequence supported by a nonstationary epidemic-like description of seismicity. Seismol Res. Lett. 95 (6), 3207-3220. https://doi.org/10.1785/0220240056.

[191]

Picozzi M., Iaccarino A.G., Spallarossa D., 2023. The preparatory process of the 2023 Mw 7.8 Türkiye earthquake. Sci. Rep. 13, 17853. https://doi.org/10.1038/s41598-023-45073-8.

[192]

Pritchard M.E., Allen R.M., Becker T.W., Behn M.D., Brodsky E.E., Bürgmann R., Ebinger C., Freymueller J.T., Gerstenberger M., Haines B., Kaneko Y., 2020. New opportunities to study earthquake precursors. Seismological Society of America 91 (5), 2444-2447. https://doi.org/10.1785/0220200089.

[193]

Reasenberg P.A., 1999. Foreshock occurrence before large earthquakes. J. Geophys. Res. 104 (B3), 4755-4768. https://doi.org/10.1029/1998JB900089.

[194]

Riggio A., Santulin M., 2015. Earthquake forecasting: a review of radon as seismic precursor. Bollettino Di Geofisica Teorica e Applicata 56 (2), 95-114. https:// doi.org/10.4430/bgta0148.

[195]

Roeloffs E.A., 2006. Evidence for aseismic deformation rate changes prior to earthquakes. Annu. Rev. Earth Planet Sci. 34 (1), 591-627. https://doi.org/10.1146/annurev.earth.34.031405.124947.

[196]

Ross Z.E., Rollins C., Cochran E.S., Hauksson E., Avouac J.-P., Ben-Zion Y., 2017. Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh. Geophys. Res. Lett. 44, 8260-8267. https://doi.org/10.1002/2017GL074634.

[197]

Ross Z.E., Trugman D.T., Hauksson E., Shearer P.M., 2019a. Searching for hidden earthquakes in Southern California. Science 364 (6442), 767-771. https://doi.org/10.1126/science.aaw6888.

[198]

Ross Z.E., Idini B., Jia Z., Stephenson O.L., Zhong M., Wang X., Zhan Z., Simons M., Fielding E.J., Yun S.H., Hauksson E., 2019b. Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science 366 (6463), 346-351. https://doi.org/10.1126/science.aaz0109.

[199]

Ross Z.E., Cochran E.S., Trugman D.T., Smith J.D., 2020. 3D fault architecture controls the dynamism of earthquake swarms. Science 368 (6497), 1357-1361. https:// doi.org/10.1126/science.abb0779.

[200]

Ruan X., Meng X., Peng Z., Long F., Xie R., 2017. Microseismic activity in the last 5 months before the Mw7.9 Wenchuan earthquake. Bull. Seismol. Soc. Am. 107 (4), 1582-1592. https://doi.org/10.1785/0120160032.

[201]

Ruiz S., Metois M., Fuenzalida A., Ruiz J., Leyton F., Grandin R., Vigny C., Madariaga R., Campos J., 2014. Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science 345 (6201), 1165-1169. https:// doi.org/10.1126/science.1256074.

[202]

Schoenball M., Ellsworth W.L., 2017. A systematic assessment of the spatio- temporal evolution of fault activation through induced seismicity in Oklahoma and southern Kansas. J. Geophys. Res. Solid Earth 122 (10). https://doi.org/10.1002/2017JB014850,189-10,206.

[203]

Scholz C.H., 2019. The Mechanics of Earthquakes and Faulting, 3rd ed. Cambridge Univ. Press, Cambridge UK.

[204]

Scholz C.H., Sykes L.R., Aggarwal Y.P., 1973. Earthquake prediction: a physical basis. Science 181, 803-810. https://doi.org/10.1126/science.181.4102.803.

[205]

Schurr B., Asch G., Hainzl S., Bedford J., Hoechner A., Palo M., Wang R., Moreno M., Bartsch M., Zhang Y., Oncken O., 2014. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature 512 (7514), 299-302. https://doi.org/10.1038/nature13681.

[206]

Shapiro S.A., Huenges E., Borm G., 1997. Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophys. J. Int. 131 (2), F15-F18. https://doi.org/10.1111/j.1365-246X.1997.tb01215.x.

[207]

Shearer P.M., Meng H., Fan W., 2023. Earthquake detection using a nodal array on the San Jacinto fault in California: evidence for high foreshock rates preceding many events. J. Geophys. Res. Solid Earth 128, e2022JB025279. https://doi.org/10.1029/2022JB025279.

[208]

Shelly D.R., 2009. Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor. Geophys. Res. Lett. 36, L17318. https://doi.org/10.1029/2009GL039589.

[209]

Shelly D.R., 2024. Examining the connections between earthquake swarms, crustal fluids, and large earthquakes in the context of the 2020-2024 Noto Peninsula, Japan, earthquake sequence. Geophys. Res. Lett. 51, e2023GL107897. https://doi.org/10.1029/2023GL107897.

[210]

Shelly D., Beroza G.C., Ide S., 2007. Non-volcanic tremor and low-frequency earthquake swarms. Nature 446, 305-307. https://doi.org/10.1038/nature05666.

[211]

Shelly D.R., Peng Z., Hill D.P., Aiken C., 2011. Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes. Nature Geosci 4, 384-388. https://doi.org/10.1038/ngeo1141.

[212]

Shelly D.R., Skoumal R.J., Hardebeck J.L., 2023. Fracture-mesh faulting in the swarmlike 2020 Maacama sequence revealed by high-precision earthquake detection, location, and focal mechanisms. Geophys. Res. Lett. 50, e2022GL101233. https:// doi.org/10.1029/2022GL101233.

[213]

Sibson R.H., 2007. An episode of fault-valve behaviour during compressional inversion? the 2004 MJ6.8 Mid-Niigata Prefecture, Japan, earthquake sequence. Earth Planet Sci. Lett. 257 (1-2), 188-199. https://doi.org/10.1016/j.epsl.2007.02.031.

[214]

Silver P.G., Wakita H., 1996. A search for earthquake precursors. Science 273 (5271). https://doi.org/10.1126/science.273.5271.77,77-77.

[215]

Sirorattanakul K., Ross Z.E., Khoshmanesh M., Cochran E.S., Acosta M., Avouac J.-P., 2022. The 2020 Westmorland, California earthquake swarm as aftershocks of a slow slip event sustained by fluid flow. J. Geophys. Res. Solid Earth 127, e2022JB024693. https://doi.org/10.1029/2022JB024693.

[216]

Socquet A., Valdes J.P., Jara J., Cotton F., Walpersdorf A., Cotte N., Specht S., OrtegaCulaciati F., Carrizo D., Norabuena E., 2017. An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophys. Res. Lett. 44, 4046-4053. https://doi.org/10.1002/2017GL073023.

[217]

Sornette D., Ouillon G., 2012. Dragon-kings: mechanisms, statistical methods and empirical evidence. Eur. Phys. J. Spec. Top. 205, 1-26. https://doi.org/10.1140/epjst/e2012-01559-5.

[218]

Sornette D., Wei X., Chen X., 2024. Self-arresting earthquakes and critical sliding nucleation theory. https://doi.org/10.48550/arXiv.2402.14626.

[219]

Spassiani I., Falcone G., Murru M., Marzocchi W., 2023. Operational earthquake forecasting in Italy: validation after 10 yr of operativity. Geophys. J. Int. 234 (3), 2501-2518. https://doi.org/10.1093/gji/ggad256.

[220]

Stockman S., Lawson D.J., Werner M.J., 2023. Forecasting the 2016-2017 Central Apennines earthquake sequence with a neural point process. Earth's Future 11, e2023EF003777. https://doi.org/10.1029/2023EF003777.

[221]

Stein R.S., Bird P., 2024. Why do great continental transform earthquakes nucleate on branch faults? Seismol Res. Lett. 95 (6), 3406-3415. https://doi.org/10.1785/0220240175.

[222]

Sugan M., Kato A., Miyake H., Nakagawa S., Vuan A., 2014. The preparatory phase of the 2009 Mw 6.3 L'Aquila earthquake by improving the detection capability of lowmagnitude foreshocks. Geophys. Res. Lett. 41 (17), 6137-6144. https://doi.org/10.1002/2014GL061199.

[223]

Sugan M., Campanella S., Vuan A., Shakibay Senobari N., 2022. A Python code for detecting true repeating earthquakes from self-similar waveforms (FINDRES). Seismological Res. Lett. 93 (5), 2847-2857. https://doi.org/10.1785/0220220048.

[224]

Sugan M., Campanella S., Chiaraluce L., Michele M., Vuan A., 2023. The unlocking process leading to the 2016 Central Italy seismic sequence. Geophys. Res. Lett. 50, e2022GL101838. https://doi.org/10.1029/2022GL101838.

[225]

Suyehiro S., Sekiya H., 1972. Foreshocks and earthquake prediction. Tectonophysics 14 (3-4), 219-225. https://doi.org/10.1016/0040-1951(72)90070-4.

[226]

Tan Y.J., Waldhauser F., Ellsworth W.L., Zhang M., Zhu W., Michele M., Chiaraluce L., Beroza G.C., Segou M., 2021. Machine-learning-based highresolution earthquake catalog reveals how complex fault structures were activated during the 2016-2017 central Italy sequence. The Seismic Record 1 (1), 11-19. https://doi.org/10.1785/0320210001.

[227]

Toda S., Stein R.S., 2024. Intense seismic swarm punctuated by a magnitude 7.5 Japan shock. Temblor. https://doi.org/10.32858/temblor.333.

[228]

Toda S., Stein R.S., Sevilgen V., 2024. Japan's magnitude 7.1 shock triggers megaquake warning. How likely is this scenario? Temblor. https://doi.org/10.32858/temblor.348.

[229]

Trugman D.T., Ross Z.E., 2019. Pervasive foreshock activity across southern California. Geophys. Res. Lett. 46, 8772-8781. https://doi.org/10.1029/2019GL083725.

[230]

Twardzik C., Duputel Z., Jolivet R., Klein E., Rebischung P., 2022. Bayesian inference on the initiation phase of the 2014 Iquique, Chile, earthquake. Earth Planet Sci. Lett. 600, 117835. https://doi.org/10.1016/j.epsl.2022.117835.

[231]

Uchida N., 2019. Detection of repeating earthquakes and their application in characterizing slow fault slip. Prog. Earth Planet. Sci. 6 (1), 1-21. https://doi.org/10.1186/s40645-019-0284-z.

[232]

Uchida N., Bürgmann R., 2019. Repeating earthquakes. Annu. Rev. Earth Planet Sci. 47 (1), 305-332. https://doi.org/10.1146/annurev-earth-053018-060119.

[233]

Umeda K., Yamazaki Y., Sumino H., 2024. Geochemical signature of deep fluids triggering earthquake swarm in the Noto Peninsula, central Japan. Geophys. Res. Lett. 51, e2024GL108581. https://doi.org/10.1029/2024GL108581.

[234]

Unsworth M., Rondenay S., 2013. Mapping the distribution of fluids in the crust and lithospheric mantle utilizing geophysical methods. In: Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28394-9_13.

[235]

Utsu T., Ogata Y., Matsu'ura R.S., 1995. The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 43 (1), 1-33. https://doi.org/10.4294/jpe1952.43.1.

[236]

Utsu, T., 2002. Statistical features of seismicity. In: Kisslinger, Carl (Eds.), International Geophysics, Academic Press, vol. 81, pp. 719-732. https://doi.org/10.1016/S0074-6142(02)80246-7.

[237]

Uyeda S., Nagao T., Kamogawa M., 2009. Short-term earthquake prediction: current status of seismo-electromagnetics. Tectonophysics 470 (3-4), 205-213. https:// doi.org/10.1016/j.tecto.2008.07.019.

[238]

Valoroso L., Chiaraluce L., Piccinini D., Di Stefano R., Schaff D., Waldhauser F., 2013. Radiography of a normal fault system by 64,000 high-precision earthquake locations: the 2009 L'Aquila (central Italy) case study. J. Geophys. Res.Solid Earth 118, 1156-1176. https://doi.org/10.1002/jgrb.50130.

[239]

van den Ende, M.P.A., 2020. On the statistical significance of foreshock sequences in Southern California. Geophys. Res. Lett. 47, e2019GL086224. https://doi.org/10.1029/2019GL086224.

[240]

van der Elst, 2021. B-positive: A robust estimator of aftershock magnitude distribution in transiently incomplete catalogs. J. Geophys. Res. Solid Earth 126, e2020JB021027. https://doi.org/10.1029/2020JB021027.

[241]

Vidale J.E., ElIsworth W.L., Cole A., Marone C., 1994. Variations in rupture process with recurrence interval in a repeated small earthquake. Nature 368, 624-626. https://doi.org/10.1038/368624a0,1994.

[242]

Vidale J.E., Shearer P.M., 2006. A survey of 71 earthquake bursts across southern California: exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. J. Geophys. Res. Solid Earth 111 (B5). https://doi.org/10.1029/2005JB004034.

[243]

Volpe G., Pozzi G., Collettini C., Spagnuolo E., Achtziger-Zupančič P., Zappone A., Aldega L., Meier M.A., Giardini D., Cocco M., 2023. Laboratory simulation of fault reactivation by fluid injection and implications for induced seismicity at the BedrettoLab, Swiss Alps. Tectonophysics 862, 229987. https://doi.org/10.1016/j.tecto.2023.229987.

[244]

Vuan A., Sugan M., Amati G., Kato A., 2018. Improving the detection of low-magnitude seismicity preceding the Mw 6.3 L'Aquila earthquake: development of a scalable code based on the cross correlation of template earthquakes. Bull. Seismol. Soc. Am. 108 (1), 471-480. doi. https://doi.org/10.1785/0120170106.

[245]

Walter J.I., Meng X., Peng Z., Schwartz S.Y., Newman A.V., Protti M., 2015. Far-field triggering of foreshocks near the nucleation zone of the 5 September 2012 (MW 7.6) Nicoya Peninsula, Costa Rica earthquake. Earth Planet Sci. Lett. 431, 75-86. https:// doi.org/10.1016/j.epsl.2015.09.017.

[246]

Wang H., Fu T., Du Y., Gao W., Huang K., Liu Z., Chandak P., Liu S., Van Katwyk P., Deac A., Anandkumar A., 2023. Scientific discovery in the age of artificial intelligence. Nature 620 (7972), 47-60. https://doi.org/10.1038/s41586-023-06221-2.

[247]

Wang K., Chen Q.F., Sun S., Wang A., 2006. Predicting the 1975 Haicheng earthquake. Bull. Seismol. Soc. Am. 96 (3), 757-795. https://doi.org/10.1785/0120050191.

[248]

Wang K., Rogers G.C., 2014. Earthquake preparedness should not fluctuate on a daily or weekly basis. Seismol Res. Lett. 85, 569-571. https://doi.org/10.1785/0220130195.

[249]

Wang K., Rogers G.C., 2017. Beating fear with hope: on sustaining earthquake preparedness. Seismol Res. Lett. 88 (1), 171-176. https://doi.org/10.1785/0220160106.

[250]

Wang K., Dreger D.S., Tinti E., Bürgmann R., Taira T.A., 2020. Rupture process of the 2019 Ridgecrest, California Mw 6.4 foreshock and Mw 7.1 earthquake constrained by seismic and geodetic data. Bull. Seismol. Soc. Am. 110 (4), 1603-1626. https:// doi.org/10.1785/0120200108.

[251]

Wang K., Peng Z., Liang S., Luo J., Zhang K., He C., 2024a. Migrating foreshocks driven by a slow slip event before the 2021 MW 6.1 Yangbi, China earthquake. J. Geophys. Res. Solid Earth 129, e2023JB027209. https://doi.org/10.1029/2023JB027209.

[252]

Wang Q.Y., Cui X., Frank W.B., Lu Y., Hirose T., Obara K., 2024b. Untangling the environmental and tectonic drivers of the Noto earthquake swarm in Japan. Sci. Adv. 10 (19), eado1469. https://doi.org/10.1126/sciadv.ado1469.

[253]

Wang L., Xu S., Zhuo Y., Liu P., Ma S., 2024c. Unraveling the roles of fault asperities over earthquake cycles. Earth Planet Sci. Lett. 636, 118711. https://doi.org/10.1016/j.epsl.2024.118711.

[254]

Wang W., Shearer P.M., Vidale J.E., Xu X., Trugman D.T., Fialko Y., 2022. Tidal modulation of seismicity at the Coso geothermal field. Earth Planet Sci. Lett. 579, 117335. https://doi.org/10.1016/j.epsl.2021.117335.

[255]

Wei X., Liu Y., Xu J., Liu W., Chen X., 2024. A detailed understanding of slow selfarresting rupture. J. Geophys. Res. Solid Earth 129, e2024JB028881. https://doi.org/10.1029/2024JB028881.

[256]

Wetzler N., Lay T., Brodsky E.E., 2023. Global characteristics of observable foreshocks for large earthquakes. Seismol Res. Lett. 94 (5), 2313-2325. https://doi.org/10.1785/0220220397.

[257]

Wickham-Piotrowski A., Font Y., Regnier M., Delouis B., Nocquet J.M., De Barros L., Durand V., Bletery Q., Segovia M., 2024. Intraslab seismicity migration simultaneously with an interface slow slip event along the Ecuadorian subduction zone. Tectonophysics 883, 230365. https://doi.org/10.1016/j.tecto.2024.230365.

[258]

Wu B.S., McLaskey G.C., 2022. Testing Earthquake Nucleation Length Scale with Pawnee Aftershocks. Seismol. Res. Lett. 93, 2147-2160. https://doi.org/10.1785/0220210184.

[259]

Wu J., Yao D., Meng X., Peng Z., Su J., Long F., 2017. Spatial-temporal evolutions of early aftershocks following the 2013 Mw 6.6 Lushan earthquake in Sichuan, China.

[260]

J. Geophys. Res. Solid Earth 122, 2873-2889. https://doi.org/10.1002/2016JB013706.

[261]

Xu D., Li Z., Zhang Z., Yu H., Xu J., Yang Z., Chen X., 2024a. The 2022 Mw 6.6 Menyuan earthquake: an early-terminated runaway rupture by the complex fault geometry. Earth Planet Sci. Lett. 638, 118746. https://doi.org/10.1016/j.epsl.2024.118746.

[262]

Xu J., Zhang H., Chen X., 2015. Rupture phase diagrams for a planar fault in 3-D fullspace and half-space. Geophys. J. Int. 202 (3), 2194-2206. https://doi.org/10.1093/gji/ggv284.

[263]

Xu L., Ji C., Meng L., Ampuero J.P., Yunjun Z., Mohanna S., Aoki Y., 2024b. Dualinitiation ruptures in the 2024 Noto earthquake encircling a fault asperity at a swarm edge. Science 385 (6711), 871-876. https://doi.org/10.1126/science.adp0493.

[264]

Yagi Y., Okuwaki R., Enescu B., Hirano S., Yamagami Y., Endo S., Komoro T., 2014. Rupture process of the 2014 Iquique Chile earth- quake in relation with the foreshock activity. Geophys. Res. Lett. 41 (12), 4201-4206. https://doi.org/10.1002/2014gl060274.

[265]

Yamashita F., Fukuyama E., Xu S., Kawakata H., Mizoguchi K., Takizawa S., 2021. Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault. Nature Communication 12 (1), 4302. https://doi.org/10.1038/s41467-021-24625-4.

[266]

Yamashita F., Fukuyama E., Xu S., 2022. Foreshock activity promoted by locally elevated loading rate on a 4 -m-long laboratory fault. J. Geophys. Res. Solid Earth 127, e2021JB023336. https://doi.org/10.1029/2021JB023336.

[267]

Yao D., Walter J.I., Meng X., Hobbs T.E., Peng Z., Newman A.V., Schwartz S.Y., Protti M., 2017. Detailed spatio-temporal evolution of microseismicity and repeating earthquakes following the 2012 Mw 7.6 Nicoya earthquake. J. Geophys. Res. 122. https://doi.org/10.1002/2016JB013632.

[268]

Yao D., Huang Y., Peng Z., Castro R.R., 2020. Detailed investigation of the foreshock sequence of the 2010 Mw 7.2 El Mayor-Cucapah earthquake. J. Geophys. Res. 124 (6), e2019JB019076. https://doi.org/10.1029/2019JB019076.

[269]

Yoshida K., Uno M., Matsuzawa T., Yukutake Y., Mukuhira Y., Sato H., Yoshida T., 2023a. Upward earthquake swarm migration in the northeastern Noto Peninsula, Japan, initiated from a deep ring-shaped cluster: possibility of fluid leakage from a hidden magma system. J. Geophys. Res. Solid Earth 128, e2022JB026047. https://doi.org/10.1029/2022JB026047.

[270]

Yoshida K., Uchida N., Matsumoto Y., Orimo M., Okada T., Hirahara S., Kimura S., Hino R., 2023b. Updip fluid flow in the crust of the northeastern Noto Peninsula, Japan, triggered the 2023 Mw 6.2 Suzu earthquake during swarm activity. Geophys. Res. Lett. 50, e2023GL106023. https://doi.org/10.1029/2023GL106023.

[271]

Yoshida K., Takagi R., Fukushima Y., Ando R., Ohta Y., Hiramatsu Y., 2024. Role of a hidden fault in the early process of the 2024 Mw7.5 Noto Peninsula earthquake. Geophys. Res. Lett. 51, e2024GL110993. https://doi.org/10.1029/2024GL110993.

[272]

Yu H., Liu J., Ma Y., Yan R., Yu C., Li S., Yang Z., Hong M., Tu H., Zhang Z., 2022. A possible characteristic of foreshocks derived from the evaluation of loading/ unloading induced by earth tides. Front. Earth Sci. 1375. https://doi.org/10.3389/feart.2022.967264.

[273]

Yue H., Ross Z.E., Liang C., Michel S., Fattahi H., Fielding E., Moore A., Liu Z., Jia B., 2017. The 2016 Kumamoto Mw=7.0 earthquake: a significant event in a fault-volcano system. J.Geophys. Res. Solid Earth 122 (11), 9166-9183. https://doi.org/10.1002/2017JB014525.

[274]

Yue H., Sun J., Wang M., Shen Z., Li M., Xue L., Lu W., Zhou Y., Ren C., Lay T., 2021. The 2019 Ridgecrest, California earthquake sequence: evolution of seismic and aseismic slip on an orthogonal fault system. Earth Planet Sci. Lett. 570, 117066. https://doi.org/10.1016/j.epsl.2021.117066.

[275]

Zaccagnino D., Vallianatos F., Michas G., Telesca L., Doglioni C., 2024. Are foreshocks fore-shocks? J. Geophys. Res. Solid Earth 129, e2023JB027337. https://doi.org/10.1029/2023JB027337.

[276]

Zhai Q., Peng Z., Chuang L.Y., Wu Y.-M., Hsu Y.-J., Wdowinski S., 2021. Investigating the impacts of a wet typhoon on microseismicity: a case study of the 2009 typhoon morakot in taiwan based on a template matching catalog. J. Geophys. Res. Solid Earth 126 (12). https://doi.org/10.1029/2021jb023026.

[277]

Zhai Q., Zhan Z., Chavarria J.A., 2024. Thousand-kilometer DAS array reveals an uncatalogued magnitude-5 dynamically triggered event after the 2023 Turkey earthquake. J. Geophys. Res. Solid Earth 129 (3), e2023JB027680. https://doi.org/10.1029/2023JB027680.

[278]

Zhan Z., 2020. Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas. Seismol Res. Lett. 91 (1), 1-15. https://doi.org/10.1785/0220190112.

[279]

Zhang M., Wen L., 2015. An effective method for small event detection: match and locate (M&L). Geophys. J. Int. 200 (3), 1523-1537. https://doi.org/10.1093/gji/ggu466.

[280]

Zhao P., Peng Z., 2009. Depth extent of damage zones around the central Calaveras fault from waveform analysis of repeating earthquakes. Geophys. J. Int. 179, 1817-1830. https://doi.org/10.1111/j.1365-246X.2009.04385.x.

[281]

Zhao Y., Jiang G., Lei X., Xu C., Zhao B., Qiao X., 2023. The 2021 Ms 6.0 luxian (China) earthquake: blind reverse-fault rupture in deep sedimentary formations likely induced by pressure perturbation from hydraulic fracturing. Geophys. Res. Lett. 50, 1-12. https://doi.org/10.1029/2023GL103209.

[282]

Zhou Y., Ren C., Ghosh A., Meng H., Fang L., Yue H., Zhou S., Su Y., 2022. Seismological characterization of the 2021 Yangbi foreshock-mainshock sequence, Yunnan, China: more than a triggered cascade. J. Geophys. Res. Solid Earth 127 (8), e2022JB024534. https://doi.org/10.1029/2022JB024534.

[283]

Zhu G., Yang H., Tan Y.J., Jin M., Li X., Yang W., 2022a. The cascading foreshock sequence of the Ms 6.4 Yangbi earthquake in Yunnan, China. Earth Planet Sci. Lett. 591, 591117594. https://doi.org/10.1016/j.epsl.2022.117594.

[284]

Zhu J.B., Kang J.Q., Elsworth D., Xie H.P., Ju Y., Zhao J., 2021. Controlling induced earthquake magnitude by cycled fluid injection. Geophys. Res. Lett. 48, e2021GL092885. https://doi.org/10.1029/2021GL092885.

[285]

Zhu S., Li S., Peng Z., Xie Y., 2022b. Imitation learning of neural spatio-temporal point processes. IEEE Trans. Knowl. Data Eng. 34 (11), 5391-5402. https://doi.org/10.1109/TKDE.2021.3054787.

[286]

Zlydenko O., Elidan G., Hassidim A., Kukliansky D., Matias Y., Meade B., Molchanov A., Nevo S., Bar-Sinai Y., 2023. A neural encoder for earthquake rate forecasting. Sci. Rep. 13 (1), 12350. https://doi.org/10.1038/s41598-023-38033-9.

[287]

Zuo Z.R., Zhang G.M., Wu J.P., 1996. Analysis of the 1976 Longling, Yunnan, earthquake sequence of Ms 7.4. Chin. J. Geophys. 39 (5), 653-659 (In Chinese).

PDF

44

Accesses

0

Citation

Detail

Sections
Recommended

/