Systems metabolic engineering of glutathione biosynthesis in Saccharomyces cerevisiae: Pathway balancing coupled with enzyme screening for high-titer production

Zhiqi Hu , Mengyuan Su , Qibing Liu , Ying Li , Yunxiang Liang , Shuangquan Li , Yingjun Li

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (4) : 100243

PDF
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (4) : 100243 DOI: 10.1016/j.engmic.2025.100243
Original Research Article
research-article

Systems metabolic engineering of glutathione biosynthesis in Saccharomyces cerevisiae: Pathway balancing coupled with enzyme screening for high-titer production

Author information +
History +
PDF

Abstract

Glutathione (GSH), an essential tripeptide thiol critical for cellular redox regulation, has significant value in the pharmaceutical and nutraceutical industries. To overcome limitations of traditional GSH extraction methods, this study established a microbial cell factory platform in Saccharomyces cerevisiae through integrated metabolic engineering strategies: (1) host strain screening identified NJ-SQYY with superior GSH accumulation (74.14 mg·L⁻¹, 8.27 mg·g-1 dry cell weight [DCW]); (2) CRISPR/Cas9-mediated genomic integration of bacterial gshAB introduced with a bifunctional glutathione synthetase; (3) systematic optimization via promoter tuning and Gsh1-Gsh2 enzyme fusion, and CYS3 overexpression-resolved γ-glutamylcysteine bottlenecks. These interventions synergistically enhanced GSH synthesis to 339.3 mg·L⁻¹ in shake flasks (4.6-fold increase), representing the highest reported titer in chromosomally engineered S. cerevisiae. Scaling to dissolved oxygen-coupled fed-batch fermentation in a 5-L bioreactor produced 997.46 mg·L⁻¹ GSH at 33.85 mg·g⁻¹ DCW. This study demonstrated a holistic metabolic engineering-to-bioprocessing approach for industrial GSH biomanufacturing.

Keywords

Glutathione biosynthesis / Saccharomyces cerevisiae / Enzyme fusion / CRISPR/Cas9 / Bioreactor scale-up

Cite this article

Download citation ▾
Zhiqi Hu, Mengyuan Su, Qibing Liu, Ying Li, Yunxiang Liang, Shuangquan Li, Yingjun Li. Systems metabolic engineering of glutathione biosynthesis in Saccharomyces cerevisiae: Pathway balancing coupled with enzyme screening for high-titer production. Engineering Microbiology, 2025, 5(4): 100243 DOI:10.1016/j.engmic.2025.100243

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

Data will be made available on request.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Yingjun Li reports financial support was provided by Key Research and Development Project of Hubei Province. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Zhiqi Hu: Writing - original draft, Visualization, Validation, Software, Resources, Methodology, Investigation, Formal analysis. Mengyuan Su: Visualization, Validation, Resources, Methodology, Data curation. Qibing Liu: Validation, Software, Resources, Formal analysis, Data curation. Ying Li: Visualization, Software, Methodology, Data curation. Yunxiang Liang: Visualization, Resources, Conceptualization. Shuangquan Li: Project administration, Funding acquisition, Conceptualization. Yingjun Li: Writing - review & editing, Supervision, Project administration, Methodology, Funding acquisition, Formal analysis, Conceptualization.

Acknowledgements

We would like to thank the National Key Laboratory of Agricultural Microbiology Core Facility for technical support. This work was supported by the National Natural Science Foundation of China (32170096); Key Research and Development Project of Hubei Province (2023BBB025).

References

[1]

P.P. Adriani, F.C.R. de Paiva, G.S. de Oliveira, A.C. Leite, A.S. Sanches, A.R. Lopes, M. V.B. Dias, F.S. Chambergo, Structural and functional characterization of the glu- tathione peroxidase-like thioredoxin peroxidase from the fungus trichoderma reesei, Int. J. Biol. Macromol. 167 (2021) 93-100.

[2]

H. Chen, X. Cao, N. Zhu, L. Jiang, X. Zhang, Q. He, P. Wei, A stepwise control strategy for glutathione synthesis in Saccharomyces cerevisiae based on oxidative stress and energy metabolism, World J. Microbiol. Biotechnol. 36 (8) (2020) 117.

[3]

D.T.H. Do, P. Fickers, I. Ben Tahar, Improvement of glutathione production by a metabolically engineered Yarrowia lipolytica strain using a small-scale optimization approach, Biotechnol. Lett. 43 (2) (2021) 407-414.

[4]

Y. Eguchi, K. Makanae, T. Hasunuma, Y. Ishibashi, K. Kito, H. Moriya, Estimating the protein-burden limit of yeast cells by measuring the fitness cost of GFP expression, eLife 7 (2018) e34595.

[5]

L. Fei, Y. Wang, S. Chen, Improved glutathione production by gene expression in Pichia pastoris, Bioprocess. Biosyst. Eng. 32 (6) (2009) 729-735.

[6]

K. Gulshan, S.A. Rovinsky, S.T. Coleman, W.S. Moye-Rowley, Oxidant-specific fold- ing of Yap1p regulates both transcriptional activation and nuclear localization, J. Biol. Chem. 280 (49) (2005) 40524-40533.

[7]

K.Y. Hara, K. Kiriyama, A. Inagaki, H. Nakayama, A. Kondo, Improvement of glu- tathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 94 (5) (2012) 1313-1319.

[8]

F.U. Hartl, M. Hayer-Hartl, Molecular chaperones in the cytosol: from nascent chain to folded protein, Science 295 (5561) (2002) 1852-1858.

[9]

H. Hiraishi, T. Miyake, B. Ono, Transcriptional regulation of Saccharomyces cerevisiae CYS 3 encoding cystathionine gamma-lyase, Curr. Genet. 53 (4) (2008) 225-234.

[10]

B.R. Iyengar, K. Pawar, K.V. Venkatesh, GroEL/S overexpression helps to purge dele- terious mutations by buffering misfolded proteins, Mol. Biol. Evol. 39 (6) (2022) msac047.

[11]

G.B. Jeon, H.J. Lee, J.P. Park, K. Park, C.H. Choi, S.K. Kim, Efficient production of glutathione in Saccharomyces cerevisiae via a synthetic isozyme system, Biotechnol. J. 18 (1) (2023).

[12]

Y. Jiang, R. Tao, Z. Shen, L. Sun, F. Zhu, S. Yang, Enzymatic production of glutathione by bifunctional gamma-glutamylcysteine synthetase/glutathione syn- thetase coupled with in vitro acetate kinase-based ATP generation, Appl. Biochem. Biotechnol. 180 (7) (2016) 1446-1455.

[13]

L.L.B. Kastberg, K.R. Patil, M.O.A. Sommer, Burden imposed by heterologous protein production in yeast cell factories, Front. Fungal Biol. 3 (2022) 827704.

[14]

J. Kobayashi, D. Sasaki, K.Y. Hara, T. Hasunuma, A. Kondo, Metabolic engineering of the L -serine biosynthetic pathway improves glutathione production in Saccha- romyces cerevisiae, Microb. Cell. Fact. 21 (1) (2022) 153.

[15]

W. Li, Z. Li, J. Yang, Q. Ye, Production of glutathione using a bifunctional enzyme encoded by gshF from Streptococcus thermophilus expressed in Escherichia coli, J. Biotechnol. 154 (4) (2011) 261-268.

[16]

Y. Li, X. Wang, N. Zhou, J. Ding, Yeast surface display technology: mechanisms, applications, and perspectives, Biotechnol. Adv. 76 (2024) 108422.

[17]

Z. Liang, K. Zheng, G. Xie, X. Luo, H. Li, Sugar utilization-associated food-grade selection markers in lactic acid bacteria and yeast, Pol. J. Microbiol. 73 (1) (2024) 3-10.

[18]

J. Lin, J. Xie, L. Luo, M. Gänzle, Characterization of GshAB of tetragenococcus halophilus: a two-domain glutathione synthetase, Appl. Microbiol. Biotechnol. 107 (9) (2023) 2997-3008.

[19]

Z. Liu, H. Li, H. Song, W. Xiao, W. Xia, X. Liu, Z. Jiang, Construction of a trifunctional cellulase and expression in Saccharomyces cerevisiae using a fusion protein, BMC Biotechnol. 18 (1) (2018) 43.

[20]

H. Mori, M. Matsui, T. Bamba, Y. Hori, S. Kitamura, Y. Toya, R. Hidese, H. Yasueda, T. Hasunuma, H. Shimizu, N. Taoka, S. Kobayashi, Engineering Escherichia coli for efficient glutathione production, Metab. Eng. 84 (2024) 180-190.

[21]

K. Orumets, K. Kevvai, I. Nisamedtinov, T. Tamm, T. Paalme, Yap 1 over-expression in Saccharomyces cerevisiae enhances glutathione accumulation at its biosynthesis and substrate availability levels, Biotechnol. J. 7 (4) (2012) 566-568.

[22]

I. Papapetridis, M. Goudriaan, M. Vazquez Vitali, N.A. de Keijzer, M. van den Broek, A.J.A. van Maris, J.T. Pronk, Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing calvin-cycle enzymes for im- proved ethanol yield, Biotechnol. Biofuels 11 (2018) 17.

[23]

S.D. Pophaly, S. Poonam, S.D. Pophaly, S. Kapila, D.K. Nanda, S.K. Tomar, R. Singh, Glutathione biosynthesis and activity of dependent enzymes in food-grade lactic acid bacteria harbouring multidomain bifunctional fusion gene ( gshF ), J. Appl. Microbiol. 123 (1) (2017) 194-203.

[24]

L.O. Santos, P.G.P. Silva, W.J.F. Lemos Junior, V.S. de Oliveira, A. Anschau, Glu- tathione production by saccharomyces cerevisiae: current state and perspectives, Appl. Microbiol. Biotechnol. 106 (5-6) (2022) 1879-1894.

[25]

M. Schmacht, E. Lorenz, M. Senz, Microbial production of glutathione, World J. Microbiol. Biotechnol. 33 (6) (2017) 106.

[26]

M. Schmacht, E. Lorenz, U. Stahl, M. Senz, Medium optimization based on yeast’s ele- mental composition for glutathione production in Saccharomyces cerevisiae, J. Biosci. Bioeng. 123 (5) (2017) 555-561.

[27]

S. Takallou, M. Hajikarimlou, M. Al-Gafari, J. Wang, S.K. Jagadeesan, T. D.D. Kazmirchuk, C. Arnoczki, H. Moteshareie, K.B. Said, T. Azad, M. Hol- cik, B. Samanfar, M. Smith, A. Golshani, Oxidative stress-induced YAP1 expression is regulated by NCE102, CDA2, and BCS1, FEBS J. 291 (20) (2024) 4602-4618.

[28]

L. Tang, W. Wang, W. Zhou, K. Cheng, Y. Yang, M. Liu, K. Cheng, W. Wang, Three-- pathway combination for glutathione biosynthesis in Saccharomyces cerevisiae, Mi- crob. Cell. Fact. 14 (2015) 139.

[29]

B. Temer, L.V. Dos Santos, V.A. Negri, J.P. Galhardo, P.H.M. Magalhaes, J. Jose, C. Marschalk, T.L.R. Correa, M.F. Carazzolle, G.A.G. Pereira, Conversion of an in- active xylose isomerase into a functional enzyme by co-expression of GroEL-GroES chaperonins in Saccharomyces cerevisiae, BMC Biotechnol. 17 (1) (2017) 71.

[30]

J.P. Torella, C.R. Boehm, F. Lienert, J.H. Chen, J.C. Way, P.A. Silver, Rapid construc- tion of insulated genetic circuits via synthetic sequence-guided isothermal assembly, Nucleic Acids Res. 42 (1) (2014) 681-689.

[31]

B. Vergauwen, D. De Vos, J.J. Van Beeumen, Characterization of the bifunctional gamma-glutamate-cysteine ligase/glutathione synthetase (GshF) of Pasteurella mul- tocida, J. Biol. Chem. 281 (7) (2006) 4380-4394.

[32]

D. Wang, C. Wang, H. Wu, Z. Li, Q. Ye, Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase, J. Ind. Microbiol. Biotechnol. 43 (1) (2016) 45-53.

[33]

Q. Wang, C. Mei, H. Zhen, J. Zhu, Codon preference optimization increases prokary- otic cystatin c expression, J. Biomed. Biotechnol. 2012 (2012) 732017.

[34]

S. Wen, T. Zhang, T. Tan, Utilization of amino acids to enhance glutathione pro- duction in Saccharomyces cerevisiae, Enzyme. Microb. Technol. 35 (6-7) (2004) 501-507.

[35]

P.-F. Xia, H. Ling, J.L. Foo, M.W. Chang, GroE chaperonins assisted functional ex- pression of bacterial enzymes in Saccharomyces cerevisiae, Biotechnol. Bioeng. 113 (4) (2016) 748-752.

[36]

P. Xia, G. Zhang, J. Liu, S. Kwak, C. Tsai, I.I. Kong, B.H. Sung, J. Sohn, S. Wang, Y. Jin, Groe chaperonins assisted functional expression of bacterial enzymes in Sac- charomyces cerevisiae, Biotechnol. Bioeng. 113 (10) (2016) 2149-2155.

[37]

Y. Xiong, Y. Xiong, Y. Wang, Z. Wang, A. Zhang, N. Zhao, D. Zhao, Z. Yu, Z. Wang, J. Yi, X. Luan, Inhibition of glutathione synthesis via decreased glucose metabolism in stored rbcs, Cell Physiol. Biochem. 51 (5) (2018) 2172-2184.

[38]

Z. Xiong, L. Kong, G. Wang, Y. Xia, H. Zhang, B. Yin, L. Ai, Functional analysis and heterologous expression of bifunctional glutathione synthetase from lactobacillus, J. Dairy Sci. 101 (8) (2018) 6937-6945.

[39]

J. Yang, W. Li, D. Wang, H. Wu, Z. Li, Q. Ye, Characterization of bifunctional glu- tathione synthetases from Actinobacillus pleuropneumoniae and Actinobacillus succino- genes for efficient glutathione biosynthesis, Appl. Microbiol. Biotechnol. 100 (14)(2016) 6279-6289.

[40]

X. Zhang, Y. Li, K. Wang, J. Yin, Y. Du, Z. Yang, X. Pan, J. You, Z. Rao, Construction of antibiotic-free riboflavin producer in Escherichia coli by metabolic engineering strategies with a plasmid stabilization system, Synth. Syst. Biotechnol. 10 (2) (2024) 346-355.

[41]

Y. Zhu, J. Sun, Y. Zhu, L. Wang, B. Qi, Endogenic oxidative stress response con- tributes to glutathione over-accumulation in mutant saccharomyces cerevisiae Y518, Appl. Microbiol. Biotechnol. 99 (17) (2015) 7069-7078.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/