Bacterial co-cultivation for the degradation of polystyrene plastics

Yuan Yingbo , Su Tianyuan , Zheng Yi , Liu Baoyue , Han Yuanfei , Wang Zhongcan , Liang Quanfeng , Dian Longyang , Qi Qingsheng

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (4) : 100232

PDF (2436KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (4) : 100232 DOI: 10.1016/j.engmic.2025.100232
Original Research Article
research-article

Bacterial co-cultivation for the degradation of polystyrene plastics

Author information +
History +
PDF (2436KB)

Abstract

Polystyrene (PS) is a polyolefin plastic that is used extensively in food packaging. The chemical structure of PS is extremely stable owing to its C-C backbone and styrene rings, making it highly resistant to biodegradation, which causes serious environmental pollution and health threats. Although certain microorganisms have been reported to degrade PS waste, most studies have focused on the changes in the molecular weight and surface structure of plastics. These slight degradation phenomena make it extremely difficult to detect the degradation products, thus challenging the definitive demonstration of PS degradation. This study investigated the co-cultivation of the polyolefin plastic-degrading bacterium Raoultella sp. DY2415 and the benzoic acid bioconversion strain Pseudomonas putida KT2440-ΔRBC. BA is a possible degradation product of PS and can be converted by P. putida KT2440-ΔRBC into the high value-added compound muconic acid (MA). After co-cultivation, MA was detected in the medium, indicating that Raoultella sp. DY2415 degraded PS and generated BA, which was subsequently utilized by P. putida KT2440-ΔRBC for MA synthesis. This study demonstrated the biodegradation of PS and the synthesis of MA through a fully biological process, thereby promoting the circular economy of plastics.

Keywords

Polystyrene / Biodegradation / Environmental pollution / Plastic package / Co-cultivation

Cite this article

Download citation ▾
Yuan Yingbo, Su Tianyuan, Zheng Yi, Liu Baoyue, Han Yuanfei, Wang Zhongcan, Liang Quanfeng, Dian Longyang, Qi Qingsheng. Bacterial co-cultivation for the degradation of polystyrene plastics. Engineering Microbiology, 2025, 5(4): 100232 DOI:10.1016/j.engmic.2025.100232

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

The data supporting the findings of this study are included in the published article as well as in the Supplementary Materials available online.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Yingbo Yuan: Writing - original draft, Resources, Methodology, Investigation, Conceptualization. Tianyuan Su: Writing - review & editing, Writing - original draft, Validation, Funding acquisition. Yi Zheng: Methodology. Baoyue Liu: Methodology. Yuanfei Han: Methodology. Zhongcan Wang: Methodology. Quanfeng Liang: Writing - review & editing, Resources, Funding acquisition, Conceptualization. Longyang Dian: Writing - review & editing, Funding acquisition. Qingsheng Qi: Writing - review & editing, Validation, Resources, Conceptualization.

Acknowledgement

This work was supported by the National Key R&D Program of China (No. 2021YFC2103600), the National Natural Science Foundation of China (No. 32200081), the Young Taishan Scholars Program of Shandong Province (tsqn202103019, tsqn202312029), the Overseas Excellent Young Scientists Fund Program of Shandong Province (2022HWYQ003), the Collaborative Research Program of the Alliance of International Science Organizations (grant no. ANSO-CR-PP-2022-01), SKLMT Frontiers and Challenges Project (SKLMTFCP-2023-02).

We thank Sen Wang, Jingyao Qu and Haiyan Sui of the Core facilities for Life and Environmental Science, State Key Laboratory of Microbial Technology of Shandong University for the assistance in SEM analysis (Quanta 250 FEG, FEI, USA).

References

[1]

C.J. Rhodes, Plastic pollution and potential solutions, Sci. Prog. 101 (2018) 207-260.

[2]

H.E. Ali. A.M Abdel Ghaffar. Preparation and effect of gamma radiation on the properties and biodegradability of poly(styrene/starch) blends, Radiat. Phys. Chem. 130 (2017) 411-420.

[3]

P. Arunrattiyakorn, S. Ponprateep, N. Kaennonsang, Y. Charapok, Y. Punphuet, S. Krajangsang, P. Tangteerawatana, A. Limtrakul, Biodegradation of polystyrene by three bacterial strains isolated from the gut of Superworms ( Zophobas atratus larvae), J. Appl. Microbiol. 132 (2022) 2823-2831.

[4]

X. Chen, N. Yan, A brief overview of renewable plastics, Mater. Today Sustain.(2020) 7-8.

[5]

B.T. Ho, T.K. Roberts, S. Lucas, An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach, Crit. Rev. Biotechnol. 38 (2017) 308-320.

[6]

A.D. Vethaak, J. Legler, Microplastics and human health, Science (1979) 371 (2021) 672-674.

[7]

R.C. Thompson, W. Courtene-Jones, J. Boucher, S. Pahl, K. Raubenheimer, A.A. Koel- mans, Twenty years of microplastic pollution research —what have we learned? Sci- ence (1979) 386 (2024).

[8]

S.S. Ali, T. Elsamahy, R. Al-Tohamy, D. Zhu, Y.A. Mahmoud, E. Koutra, M.A. Met-wally, M. Kornaros, J. Sun, Plastic wastes biodegradation: Mechanisms, challenges and future prospects, Sci. Total Environ. 780 (2021).

[9]

Y.-Y. Tang, J.-M. Chen, J. Zhang, H. Wu, Y.-P. Wang, J.-F. Zhang, Biodegradation of polystyrene by Spodoptera litura and Spodoptera frugiperda larvae (Lepidoptera: Noc- tuidae): Insights into the frass characterization and responses of gut microbiomes, J. Hazard. Mater. 492 (2025).

[10]

L. Xu, Z. Li, L. Wang, Z. Xu, S. Zhang, Q. Zhang, Progress in polystyrene biodegra- dation by insect gut microbiota, World J. Microbiol. Biotechnol. 40 (2024).

[11]

W. Lin, Y. Yao, T. Su, Z. Wang, Biodegradation of polystyrene by bacteria isolated from the yellow mealworm (Tenebrio molitor) gut, J. Environ. Chem. Eng. 12 (2024).

[12]

V. Jebashalomi, P.Emmanuel Charles, R. Rajaram, Microbial degradation of low-density polyethylene (LDPE) and polystyrene using Bacillus cereus (OR268710) iso- lated from plastic-polluted tropical coastal environment, Sci. Total Environ. 924 (2024).

[13]

Z. Wang, X. Xin, X. Shi, Y. Zhang, A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum, Sci. Total Environ. 726 (2020).

[14]

Y. Zhang, J.N. Pedersen, B.E. Eser, Z. Guo, Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery Biotechnol. Adv. 60 (2022).

[15]

Z. Zhang, Q. Zhang, H. Yang, L. Cui, H. Qian, Mining strategies for isolating plas- tic-degrading microorganisms, Environ. Pollut. 346 (2024).

[16]

A.A. Shah, F. Hasan, A. Hameed, S. Ahmed, Biological degradation of plastics: A comprehensive review Biotechnol. Adv. 26 (2008) 246-265.

[17]

I.B. Kotova, Y.V. Taktarova, E.A. Tsavkelova, M.A. Egorova, I.A. Bubnov, D.V. Malakhova, L.I. Shirinkina, T.G. Sokolova, E.A. Bonch-Osmolovskaya, Micro- bial degradation of plastics and approaches to make it more efficient, Microbiology(N. Y) 90 (2021) 671-701.

[18]

Q. Qiu, H. Li, X. Sun, K. Tian, J. Gu, F. Zhang, D. Zhou, X. Zhang, H. Huo, Integrating genomics, molecular docking, and protein expression to explore new perspectives on polystyrene biodegradation, J. Hazard. Mater. 476 (2024).

[19]

T. Zhang, X. Li, X. Rao, Y. Peng, C. Zhao, Y. Xu, J. Li, J. Wei, Biodegradation of polystyrene and polyethylene by Microbacterium esteraromaticum SW3 isolated from soil, Ecotoxicol. Environ. Saf. 274 (2024).

[20]

A. kanwal, M. Zhang, F. Sharaf, Synergistic degradation of PBAT poly (butylene adipate-co-terephthalate) co-polyesters using a bacterial co-culture system, Polymer Bull. 81 (2023) 2741-2755.

[21]

Y. Tian, K. Wu, S. Lin, M. Shi, Y. Liu, X. Su, R. Islam, Biodegradation and decoloriza- tion of crystal violet dye by cocultivation with fungi and bacteria, ACS. Omega 9 (2024) 7668-7678.

[22]

T. El Darai, A. Ter-Halle, M. Blanzat, G. Despras, V. Sartor, G. Bordeau, A. Lattes, S. Franceschi, S. Cassel, N. Chouini-Lalanne, E. Perez, C. Déjugnat, J.-C. Garrigues, Chemical recycling of polyester textile wastes: shifting towards sustainability, Green Chem. 26 (2024) 6857-6885.

[23]

S. Skariyachan, N. Taskeen, A.P. Kishore, B.V. Krishna, Recent advances in plastic degradation-From microbial consortia-based methods to data sciences and compu- tational biology driven approaches, J. Hazard. Mater. 426 (2022).

[24]

P. Liu, T. Zhang, Y. Zheng, Q. Li, T. Su, Q. Qi, Potential one-step strategy for PET degradation and PHB biosynthesis through co-cultivation of two engineered mi- croorganisms, Eng. Microbiol. 1 (2021).

[25]

P. Liu, Y. Zheng, Y. Yuan, Y. Han, T. Su, Q. Qi, Upcycling of PET oligomers from chemical recycling processes to PHA by microbial co-cultivation, Waste Manag. 172 (2023) 51-59.

[26]

M. Bhatia, GirdharA , A. Tiwari, A. Nayarisseri, Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to i n silico approach, Springerplus. 3 (2014).

[27]

S. Sun, H. Wang, K. Yan, J. Lou, J. Ding, S.A. Snyder, L. Wu, J. Xu, Metabolic in- teractions in a bacterial co-culture accelerate phenanthrene degradation, J. Hazard. Mater. 403 (2021).

[28]

Y. Yuan, P. Liu, Y. Zheng, Q. Li, J. Bian, Q. Liang, T. Su, L. Dian, Q. Qi, Unique Raoultella species isolated from petroleum contaminated soil degrades polystyrene and polyethylene, Ecotoxicol. Environ. Saf. 263 (2023).

[29]

P. Liu, Y. Zheng, Y. Yuan, T. Zhang, Q. Li, Q. Liang, T. Su, Q. Qi, Valorization of polyethylene terephthalate to muconic acid by engineering Pseudomonas Putida, Int. J. Mol. Sci. 23 (2022).

[30]

C.N. Muhonja, H. Makonde, G. Magoma, M. Imbuga, Biodegradability of polyethy- lene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya, PLoS. One 13 (2018).

[31]

X. Zhang, F. Wang, X. Guo, L. Qiao, X. Luo, L. Cui, Q. Liang, M. Liu, Q. Qi, Developing a RecT-assisted endogenous CRISPR/SzCas9 system for precise genome editing in Streptococcus zooepidemicus, Int. J. Biol. Macromol. 291 (2025).

[32]

A.U. Bacha, I. Nabi, M. Zaheer, W. Jin, L. Yang, Biodegradation of macro- and micro-plastics in environment: A review on mechanism, toxicity, and future perspectives Sci. Total Environ. 858 (2023).

[33]

T. Mamtimin, H. Han, A. Khan, P. Feng, Q. Zhang, X. Ma, Y. Fang, P. Liu, S. Kulshrestha, T. Shigaki, X. Li, Gut microbiome of mealworms ( Tenebrio molitor Larvae) show similar responses to polystyrene and corn straw diets, Microbiome 11 (2023).

[34]

W. Wang, S. Yao, Z. Zhao, Z. Liu, Q.X. Li, H. Yan, X. Liu, Degradation and potential metabolism pathway of polystyrene by bacteria from landfill site, Environ. Pollut. 343 (2024).

[35]

S. Moulay, Functionalized polystyrene and polystyrene-containing material plat- forms for various applications, Polym. Plast. Technol. Eng. 57 (2017) 1045-1092.

[36]

P. Liu, K. Lu, J. Li, X. Wu, L. Qian, M. Wang, S. Gao, Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates, J. Hazard. Mater. 384 (2020).

[37]

J. Son, S.H. Lim, Y.J. Kim, H.J. Lim, J.Y. Lee, S. Jeong, C. Park, S.J. Park, Customized valorization of waste streams by Pseudomonas putida: State-of-the-art, challenges, and future trends, Bioresour. Technol. 371 (2023) 128607.

[38]

A. Choudhary, H. Purohit, P.S. Phale, Benzoate transport in Pseudomonas putida CSV86, FEMS Microbiol. Lett. 364 (2017).

[39]

J. Sun, M. Raza, X. Sun, Q. Yuan, Biosynthesis of adipic acid via microaerobic hydro- genation of cis,cis -muconic acid by oxygen-sensitive enoate reductase, J. Biotechnol. 280 (2018) 49-54.

[40]

D.R. Vardon, N.A. Rorrer, D. Salvachúa, A.E. Settle, C.W. Johnson, M.J. Menart, N.S. Cleveland, P.N Ciesielski, K.X. Steirer, J.R. Dorgan, G.T. Beckham, cis,cis -Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 poly- merization, Green Chem. 18 (2016) 3397-3413.

[41]

N.-Z. Xie, H. Liang, R.-B. Huang, P. Xu, Biotechnological production of muconic acid: current status and future prospects, Biotechnol. Adv. 32 (2014) 615-622.

[42]

Z. Shen, B. Lan, Q. Yang, A new viewpoint on aging degradation of polystyrene: From the perspective of molecular weight, Polymer. (Guildf) 288 (2023).

[43]

V. Singh, A. Mishra, P. Srivastava, Textile and domestic effluent treatment via co-cul-tivation of Diplosphaera mucosa VSPA and Scenedesmus obliquus, Biomass Bioen- ergy 172 (2023).

[44]

P. Zhu, X. Pan, X. Li, X. Liu, Q. Liu, J. Zhou, X. Dai, G. Qian, Biodegradation of plastics from waste electrical and electronic equipment by greater wax moth larvae ( Galleria mellonella ), J. Clean. Prod. 310 (2021).

[45]

P. Xiang, Y. Zhang, T. Zhang, Q. Wu, C. Zhao, Q. Li, A novel bacterial combination for efficient degradation of polystyrene microplastics, J. Hazard. Mater. 458 (2023).

[46]

Q. Wang, H. Chen, W. Gu, S. Wang, Y. Li, Biodegradation of aged polyethylene (PE) and polystyrene (PS) microplastics by yellow mealworms (Tenebrio molitor larvae), Sci. Total Environ. 927 (2024).

[47]

S.-S. Yang, M.-Q. Ding, X.-R. Ren, Z.-R. Zhang, M.-X. Li, L.-L. Zhang, J.-W. Pang, C.-X. Chen, L. Zhao, D.-F. Xing, N.-Q. Ren, J. Ding, W.-M. Wu, Impacts of physi- cal-chemical property of polyethylene on depolymerization and biodegradation in yellow and dark mealworms with high purity microplastics, Sci. Total Environ. 828 (2022).

[48]

X. Xu, R. Zarecki, S. Medina, S. Ofaim, X. Liu, C. Chen, S. Hu, D. Brom, D. Gat, S. Porob, H. Eizenberg, Z. Ronen, J. Jiang, S. Freilich, Modeling microbial commu- nities from atrazine contaminated soils promotes the development of biostimulationsolutions, ISMe J. 13 (2019) 494-508.

AI Summary AI Mindmap
PDF (2436KB)

358

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/