Decoupling growth phase dependency and metal ion inhibition: A dual engineering strategy for the high-yield biosynthesis of microcin J25 in Escherichia coli

Guangxin Yang , Xinchan Wang , Yunting Zhou , Xiuliang Ding , Jinxiu Huang , Shiyan Qiao , Aihua Deng , Haitao Yu

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (4) : 100230

PDF (1426KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (4) : 100230 DOI: 10.1016/j.engmic.2025.100230
Original Research Article
research-article

Decoupling growth phase dependency and metal ion inhibition: A dual engineering strategy for the high-yield biosynthesis of microcin J25 in Escherichia coli

Author information +
History +
PDF (1426KB)

Abstract

Microcin J25 (MccJ25) has received substantial attention as a potential solution to the global threat of infection caused by antibiotic-resistant bacteria. However, the industrial fermentation of MccJ25 faces production bottlenecks. It is imperative to further explore the production optimization strategies for MccJ25 to formulate comprehensive approaches for its industrial-scale production and other downstream applications. Here, Fe²⁺ in tap water was identified as a critical inhibitor of MccJ25 biosynthesis, selectively repressing mcjA transcription, which was reversible via 2,2′-bipyridine-mediated chelation. To decouple production from growth phase dependency and Fe²⁺ interference, we engineered Escherichia coli BL21 cells by performing two genetic modifications. First, we replaced the native mcjA promoter with a constitutive promoter (PQ) to allow its mid-log phase expression. Second, we replaced the native mcjBCD promoter with a medium-strength variant (P2223) that delayed production kinetics without affecting final yields. However, the genomic integration of mcjD alleviated plasmid-borne toxicity, increasing the expression timing and doubling the yield to 240 mg/L. Finally, we computationally optimized the mcjA ribosome-binding site (RBS) to enhance translation efficiency. RBS optimization revealed that a moderate translation initiation efficiency (550,584 arbitrary units [au]) maximized production, whereas excessive efficiency (2,019,712 au) impaired growth and output. These interventions synergistically increased the MccJ25 titer 10-fold, reaching 430 mg/L in batch culture. Our findings establish a robust platform for MccJ25 overproduction, highlighting promoter engineering and translational tuning as pivotal strategies for antimicrobial peptide biosynthesis. This study provides insights for overcoming metabolic constraints in microbial fermentation, advancing the development of peptide-based therapeutics against multidrug-resistant pathogens.

Keywords

Antimicrobial peptide / Microcin J25 / Recombinant expression / Biosynthesis

Cite this article

Download citation ▾
Guangxin Yang, Xinchan Wang, Yunting Zhou, Xiuliang Ding, Jinxiu Huang, Shiyan Qiao, Aihua Deng, Haitao Yu. Decoupling growth phase dependency and metal ion inhibition: A dual engineering strategy for the high-yield biosynthesis of microcin J25 in Escherichia coli. Engineering Microbiology, 2025, 5(4): 100230 DOI:10.1016/j.engmic.2025.100230

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Haitao Yu reports administrative support was provided by China Agricultural University.

CRediT authorship contribution statement

Guangxin Yang: Writing - original draft, Formal analysis, Data curation. Xinchan Wang: Writing - original draft, Formal analysis, Data curation. Yunting Zhou: Formal analysis, Data curation. Xiuliang Ding: Methodology. Jinxiu Huang: Methodology, Funding acquisition. Shiyan Qiao: Funding acquisition, Conceptualization. Aihua Deng: Writing - review & editing, Supervision, Methodology. Haitao Yu: Writing - review & editing, Supervision, Funding acquisition, Conceptualization.

Acknowledgments

The authors would like to express gratitude to Dr. Xiuliang Ding for providing technical guidance and core facilities at Chongqing Academy of Animal Science.

This research was supported by the Young Scientists Fund of the National Natural Science Foundation of China ( 32402807 ), the National Key Research and Development Program of China (Grant num- ber 32030105 ), the Pioneer Technology Project of the National Center for Technology Innovation for Pigs (NCTIP-XD/B05), the Pinduoduo- China Agricultural University Research Fund (PC2023A01001), and the Chongqing Technology Innovation and Application Development Spe- cial Project (cstc2021jscx dxwtBX0005).

Data Availability Statement

All relevant data supporting the findings of this study are available in this manuscript and the supplementary materials.

References

[1]

E. Tacconelli, E. Carrara, A. Savoldi, S. Harbarth, M. Mendelson, D.L. Mon- net, et al., WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic- resistant bacteria and tuberculosis, Lancet Infect. Dis. 18 (3) (2018) 318-327, doi:10.1016/S1473-3099(17)30753-3.

[2]

H.B. Yi, L. Zhang, Z.S. Gan, H.T. Xiong, C.H. Yu, H.H. Du, et al., High therapeutic efficacy of Cathelicidin-WA against postweaning diarrhea by inhibiting inflamma- tion and enhancing epithelial barrier in the intestine, Sci. Rep. 6 (2016) 25679, doi:10.1038/srep25679.

[3]

C.A. Arias, BE. Murray, A new antibiotic and the evolution of resistance, N. Engl. J. Med. 372 (2015) 1168-1170, doi:10.1056/NEJMcibr1500292.

[4]

G. Cheng, H. Hao, S. Xie, X. Wang, M. Dai, L. Huang, et al., Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front. Microbiol. 5 (2014) 217, doi:10.3389/fmicb.2014.00217.

[5]

M. Magana, M. Pushpanathan, A.L. Santos, L. Leanse, M. Fernandez, A. Ioannidis, et al., The value of antimicrobial peptides in the age of resistance, Lancet Infect. Dis. 20 (9) (2020) e216-e230, doi:10.1016/S1473-3099(20)30327-3.

[6]

M.E. Schafer, H. Browne, J.B. Goldberg, DE. Greenberg, Peptides and antibiotic ther- apy: advances in design and delivery, Acc. Chem. Res. 54 (10) (2021) 2377-2385, doi:10.1021/acs.accounts.1c00040.

[7]

S. Crunkhorn, Antibacterials: microcins limit intestinal infection, Nat. Rev. Drug Discov. 16 (1) (2016) 18, doi:10.1038/nrd.2016.270.

[8]

S.Y. Kim, J.R. Randall, R. Gu, Q.D. Nguyen, BW. Davies, Antibacterial action, pro- teolytic immunity, and in vivo activity of a Vibrio cholerae microcin, Cell Host. Microbe 32 (11) (2024) 1959-1971.e6, doi:10.1016/j.chom.2024.08.012.

[9]

M. Sassone-Corsi, S.P. Nuccio, H. Liu, et al., Microcins mediate competition among Enterobacteriaceae in the inflamed gut, Nature 540 (7632) (2016) 280-283, doi:10.1038/nature20557.

[10]

R.A. Salomón, RN. Farías, Microcin 25, a novel antimicrobial peptide produced by Escherichia coli, J. Bacteriol. 174 (22) (1992) 7428-7435, doi:10.1128/jb.174.22.7428-7435.1992.

[11]

E. Semenova, Y. Yuzenkova, J. Peduzzi, S. Rebuffat, K. Severinov, Structure-activity analysis of microcinJ25: distinct parts of the threaded lasso molecule are responsible for interaction with bacterial RNA polymerase, J. Bacteriol. 187 (11) (2005) 3859-3863, doi:10.1128/JB.187.11.3859-3863.2005.

[12]

J.O. Solbiati, M. Ciaccio, R.N. Farías, J.E. González-Pastor, F. Moreno, RA. Sa- lomón, Sequence analysis of the four plasmid genes required to produce the cir- cular peptide antibiotic microcin J25, J. Bacteriol. 181 (8) (1999) 2659-2662, doi:10.1128/JB.181.8.2659-2662.1999.

[13]

M.J. Chiuchiolo, M.A. Delgado, R.N. Farías, RA. Salomón, Growth-phase-dependent expression of the cyclopeptide antibiotic microcin J25, J. Bacteriol. 183 (5) (2001) 1755-1764, doi:10.1128/JB.183.5.1755-1764.2001.

[14]

S.J. Pan, W.L. Cheung, AJ. Link, Engineered gene clusters for the production of the antimicrobial peptide microcin J25, Protein Expr. Purif. 71 (2) (2010) 200-6, doi:10.1016/j.pep.2009.12.010.

[15]

H. Yu, X. Ding, L. Shang, X. Zeng, H. Liu, N. Li, et al., Protective Ability of Biogenic antimicrobial peptide microcin J25 against enterotoxigenic Escherichia Coli -induced intestinal epithelial dysfunction and inflammatory responses IPEC-J2 Cells, Front. Cell Infect. Microbiol. 8 (2018) 242, doi:10.3389/fcimb.2018.00242.

[16]

H.T. Yu, X.L. Ding, N. Li, X.Y. Zhang, X.F. Zeng, S. Wang, et al., Dietary supplemented antimicrobial peptide microcin J 25 improves the growth performance, apparent to- tal tract digestibility, fecal microbiota, and intestinal barrier function of weaned pigs, J. Anim. Sci. 95 (11) (2017) 5064-5076, doi:10.2527/jas2017.1494.

[17]

J.O. Solbiati, M. Ciaccio, R.N. Farías, RA. Salomón, Genetic analysis of plasmid de- terminants for microcin J25 production and immunity, J. Bacteriol. 178 (12) (1996) 3661-3663, doi:10.1128/jb.178.12.3661-3663.1996.

[18]

R. Grisshammer, CG. Tate, Overexpression of integral membrane pro- teins for structural studies, Q. Rev. Biophys. 28 (3) (1995) 315-422, doi:10.1017/s0033583500003504.

[19]

S. Mehmood, V. Corradi, H.G. Choudhury, R. Hussain, P. Becker, D. Axford, et al., Structural and functional basis for lipid synergy on the activity of the antibacte- rial peptide ABC Transporter mcjd, J. Biol. Chem. 291 (41) (2016) 21656-21668, doi:10.1074/jbc.M116.732107.

[20]

B.S. Laursen, H.P. Sørensen, K.K. Mortensen, H.U. Sperling-Petersen, Initiation of protein synthesis in bacteria, Microbiol. Mol. Biol. Rev. 69 (1) (2005) 101-123, doi:10.1128/MMBR.69.1.101-123.2005.

[21]

I. Mathavan, K. Beis, The role of bacterial membrane proteins in the internalization of microcin MccJ25 and MccB17, Biochem. Soc. Trans. 40 (6) (2012) 1539-1543, doi:10.1042/BST20120176.

[22]

M. Zoonens, B. Miroux, Expression of membrane proteins at the Escherichia coli membrane for structural studies, Methods Mol. Biol. 601 (2010) 49-66, doi:10.1007/978-1-60761-344-2_4.

[23]

MV. Rodnina, Translation in prokaryotes, Cold. Spring. Harb. Perspect. Biol. 10 (9)(2018) a032664, doi:10.1101/cshperspect.a032664.

[24]

Y. Zhang, H. Chen, Y. Zhang, H. Yin, C. Zhou, Y. Wang, Direct RBS Engineer- ing of the biosynthesis-related gene cluster for efficient productivity of viola- ceins in E. coli, Microb. Cell Fact. 20 (1) (2021) 38, doi:10.1186/s12934-021-01518-1.

[25]

HM. Salis, The ribosome binding site calculator, Methods Enzymol. 498 (2011) 19-42, doi:10.1016/B978-0-12-385120-8.00002-4.

[26]

C.O. Gualerzi, CL. Pon, Initiation of mRNA translation in bacteria: Struc- tural and dynamic aspects, Cell Mol. Life Sci. 72 (22) (2015) 4341-4367, doi:10.1007/s00018-015-2010-3.

Funding

the Young Scientists Fund of the National Natural Science Foundation of China(32402807)

the National Key Research and Development Program of China(Grant number 32030105)

the Pioneer Technology Project of the National Center for Technology Innovation for Pigs(NCTIP-XD/B05)

the Pinduoduo-China Agricultural University Research Fund(PC2023A01001)

the Chongqing Technology Innovation and Application Development Special Project(cstc2021jscx dxwtBX0005)

AI Summary AI Mindmap
PDF (1426KB)

247

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/