Simultaneous co-cultivation of the thermoacidophilic methanotroph, Methylacidiphilum sp. RTK17.1, and the microalga, Galdieria sp. RTK37.1, for single cell protein production

Cartin-Caballero Author , Collet Christophe , Gapes Daniel , A. Gostomski Peter , B. Stott Matthew , R. Carere Carlo

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (4) : 100229

PDF (2454KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (4) : 100229 DOI: 10.1016/j.engmic.2025.100229
Original Research Article
research-article

Simultaneous co-cultivation of the thermoacidophilic methanotroph, Methylacidiphilum sp. RTK17.1, and the microalga, Galdieria sp. RTK37.1, for single cell protein production

Author information +
History +
PDF (2454KB)

Abstract

The verrucomicrobial methanotroph, Methylacidiphilum sp. RTK17.1, and the microalgae, Galdieria sp. RTK37.1 are both thermoacidophilic microorganisms isolated from geothermally heated soils at Rotokawa, Aotearoa-New Zealand. In this work, we used cocultures of Methylacidiphilum sp. RTK17.1 and Galdieria sp. RTK37.1 in batch and continuous systems (45 °C, pH 2.5) to assess their biomass productivity and performance; with the goal of removing methane and carbon dioxide from simulated waste gas streams and assessing the resultant biomass for its potential use as single cell protein. Coculture performance was compared to corresponding axenic cultures and the nutritional suitability of resultant biomass was assessed as a single cell protein feedstock. Stable coculture was achieved in both batch and chemostat systems. In batch experiments, Galdieria sp. RTK37.1 significantly enhanced growth (29 %) and methane oxidation (300 %) rates of Methylacidiphilum sp. RTK17.1, and complete methane removal was achieved without formation of an explosive gas mixture. In steady state chemostat coculture experiments, Galdieria sp. RTK37.1 decreased net volumetric oxygen consumption by 46 %, but its oxygenic activity was unable to supply Methylacidiphilum sp. RTK17.1 with the O2 required for complete CH4 removal. Nevertheless, Methylacidiphilum sp. RTK17.1 benefited from the presence of Galdieria sp. RTK37.1 in a low O2 environment; with O2 algae-methanotroph cross-feeding playing a fundamental role on their interactions. Methylacidiphilum sp. RTK17.1, Galdieria sp. RTK37.1, and their coculture each displayed similar nutritional profiles, with protein quality comparable to soybean meal and fishmeal feeds used for animals. The biomass needed to meet the daily indispensable amino acid requirements of a 62 kg adult human was 568 g for Methylacidiphilum sp. RTK17.1, 804 g Galdieria sp. RTK37.1, and 754 g for the coculture, with histidine being the limiting amino acid. These thermoacidophilic cocultures, which have not previously been investigated, offer great potential to convert low (or negative) value industrial gas streams into valuable products (e.g. supplementary biofeedstocks).

Keywords

Microalgae / Methanotroph / Coculture / Bioprocess / Extremophile / Single cell protein

Cite this article

Download citation ▾
Cartin-Caballero Author, Collet Christophe, Gapes Daniel, A. Gostomski Peter, B. Stott Matthew, R. Carere Carlo. Simultaneous co-cultivation of the thermoacidophilic methanotroph, Methylacidiphilum sp. RTK17.1, and the microalga, Galdieria sp. RTK37.1, for single cell protein production. Engineering Microbiology, 2025, 5(4): 100229 DOI:10.1016/j.engmic.2025.100229

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

All data may be made available by request.

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

A patent application (PCT/IB2024/054,938) has been submitted and is currently in consideration. All authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by an MBIE Smart Ideas grant (QT-7183) awarded to CCC, MBS, CC, PAG and CRC. Ngāti Tahu-Ngāti Whaoa is acknowledged as the iwi having mana whenua (customary rights) over the Rotokawa geothermal field, Galdieria sp. RTK37.1, Methylacidiphilum sp. RTK17.1 and associated microorganisms. We thank Ngāti Tahu-Ngāti Whaoa Runanga Trust and Tauhara North No 2 Trust for their support of our research.

Supplementary Materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.engmic.2025.100229.

References

[1]

R.S. Hanson, T.E. Hanson, Methanotrophic bacteria, Microbiol. Rev 60 (1996) 439-471, doi:10.1128/mr.60.2.439-471.1996.

[2]

S. Cantera, R. Munoz, R. Lebrero, J.C. Lopez, Y. Rodriguez, P.A. Garcia-Encina, Tech- nologies for the bioconversion of methane into more valuable products, Curr. Opin. Biotechnol 50 (2018) 128-135, doi:10.1016/j.copbio.2017.12.021.

[3]

G. Hamer, Methanotrophy: from the environment to industry and back, Chem. Eng. J 160 (2010) 391-397, doi:10.1016/j.cej.2010.04.008.

[4]

L. Chistoserdova, Methylotrophs in natural habitats: current insights through metagenomics, Appl. Microbiol. Biotechnol 99 (2015) 5763-5779, doi:10.1007/s00253-015-6713-z.

[5]

P.J. Strong, M. Kalyuzhnaya, J. Silverman, W.P. Clarke, A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fer- mentation, Bioresour. Technol. 215 (2016) 314-323, doi:10.1016/j.biortech.2016.04.099.

[6]

P.J. Strong, S. Xie, W.P. Clarke, Methane as a resource: can the methanotrophs add value? Env. Sci. Technol. 49 (2015) 4001-4018, doi:10.1021/es504242n.

[7]

S. Matassa, N. Boon, I. Pikaar, W. Verstraete, Microbial protein: future sustainable food supply route with low environmental footprint, Microb. Biotechnol. 9 (2016) 568-575, doi:10.1111/1751-7915.12369.

[8]

J. Zhang, M. Yu, J. Wang, M. Longshaw, K. Song, L. Wang, X. Li, C. Zhang, K. Lu, Methanotroph (Methylococcus capsulatus, Bath) bacteria meal alleviates soy- bean meal-induced enteritis in spotted seabass (Lateolabrax maculatus) by modu- lating immune responses and the intestinal flora, Aquaculture 575 (2023) 739795, doi:10.1016/j.aquaculture.2023.739795.

[9]

Y. Han, J. Wang, Z. Zhao, J. Chen, H. Lu, G. Liu, Combined impact of fishmeal and tetracycline on resistomes in mariculture sediment, Environ. Pollut. 242 (2018) 1711-1719, doi:10.1016/j.envpol.2018.07.101.

[10]

M.P. Gundupalli, S. Ansari, J.P. Vital da Costa, F. Qiu, J. Anderson, M. Luckert, D.C. Bressler, Bacterial single cell protein (BSCP): a sustainable protein source from methylobacterium species, Trends. Food Sci. Technol. 147 (2024) 104426, doi:10.1016/j.tifs.2024.104426.

[11]

Q. Fei, M.T. Guarnieri, L. Tao, L.M. Laurens, N. Dowe, P.T. Pienkos, Bioconversion of natural gas to liquid fuel: opportunities and challenges, Biotechnol. Adv 32 (2014) 596-614, doi:10.1016/j.biotechadv.2014.03.011.

[12]

R. Singh, J. Ryu, S.W. Kim, Microbial consortia including methanotrophs: some benefits of living together, J. Microbiol 57 (2019) 939-952, doi:10.1007/s12275-019-9328-8.

[13]

B. Zhang, W. Li, Y. Guo, Z. Zhang, W. Shi, F. Cui, P.N.L. Lens, J.H. Tay, Microalgal- bacterial consortia: from interspecies interactions to biotechnological applications, Renew. Sustain. Energy Rev 118 (2020) 109563, doi:10.1016/j.rser.2019.109563.

[14]

S. Zhang, N. Merino, A. Okamoto, P. Gedalanga, Interkingdom microbial consortia mechanisms to guide biotechnological applications, Microb. Biotechnol 11 (2018) 833-847, doi:10.1111/1751-7915.13300.

[15]

S.Y. Jeong, K.S. Cho, T.G. Kim, Density-dependent enhancement of methane oxi- dation activity and growth of Methylocystis sp. by a non-methanotrophic bacterium Sphingopyxis sp, Biotechnol. Rep 4 (2014) 128-133, doi:10.1016/j.btre.2014.09.007.

[16]

S.Y. Jeong, T.G. Kim, Development of a novel methanotrophic process with the helper micro-organism Hyphomicrobium sp. NM3, J. Appl. Microbiol 126 (2019) 534-544, doi:10.1111/jam.14140.

[17]

H. Iguchi, H. Yurimoto, Y. Sakai, Stimulation of methanotrophic growth in cocul- tures by Cobalamin excreted by Rhizobia, Appl. Env. Microbiol 77 (2011) 8509-8515, doi:10.1128/AEM.05834-11.

[18]

H. Bothe, K. Moller Jensen, A. Mergel, J. Larsen, C. Jorgensen, H. Bothe, L. Jor-gensen, Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process, Appl. Microbiol. Biotechnol 59 (2002) 33-39, doi:10.1007/s00253-002-0964-1.

[19]

D. van der Ha, B. Bundervoet, W. Verstraete, N. Boon, A sustainable, carbon neutral methane oxidation by a partnership of methane oxidizing communities and microal- gae, Water. Res. 45 (2011) 2845-2854, doi:10.1016/j.watres.2011.03.005.

[20]

Z. Rasouli, B. Valverde-Pérez, M. D’Este, D. De Francisci, I. Angelidaki, Nutrient recovery from industrial wastewater as single cell protein by a co-culture of green microalgae and methanotrophs, Biochem. Eng. J 134 (2018) 129-135, doi:10.1016/j. bej.2018.03.010.

[21]

E.A. Hill, W.B. Chrisler, A.S. Beliaev, H.C. Bernstein, A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feed- stocks, Bioresour. Technol 228 (2017) 250-256, doi:10.1016/j.biortech.2016.12.111.

[22]

M. Ota, M. Takenaka, Y. Sato, R.L. Smith Jr, H. Inomata, Variation of photoau- totrophic fatty acid production from a highly CO2tolerant alga , Chlorococcum lit- torale, with inorganic carbon over narrow ranges of pH, Biotechnol. Prog 31 (2015) 1053-1057, doi:10.1002/btpr.2099.

[23]

J. Cheng, K. Li, Z. Yang, H. Lu, J. Zhou, K. Cen, Gradient domestication of Haemato- coccus pluvialis mutant with 15% CO2 to promote biomass growth and astaxanthin yield, Bioresour. Technol 216 (2016) 340-344, doi:10.1016/j.biortech.2016.05.095.

[24]

P. Varshney, P. Mikulic, A. Vonshak, J. Beardall, P.P. Wangikar, Extremophilic micro-algae and their potential contribution in biotechnology, Bioresour. Technol 184 (2015) 363-372, doi:10.1016/j.biortech.2014.11.040.

[25]

J.-N. Lee, J.-S. Lee, C.-S. Shin, S.-C. Park, S.-W. Kim, Methods to enhance toler- ances of Chlorella KR-1 to toxic compounds in flue gas, Appl. Biochem. Biotechnol 84 (2000) 329-342, doi:10.1385/ABAB:84-86:1-9:329.

[26]

B. Zhao, Y. Su, Process effect of microalgal-carbon dioxide fixation and biomass production: a review, Renew. Sustain. Energy Rev 31 (2014) 121-132, doi:10.1016/j.rser.2013.11.054.

[27]

Y. Jiang, W. Zhang, J. Wang, Y. Chen, S. Shen, T. Liu, Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus, Bioresour. Technol 128 (2013) 359-364, doi:10.1016/j.biortech.2012.10.119.

[28]

J. Marquardt, E. Rhiel, The membrane-intrinsic light-harvesting complex of the red alga Galdieria sulphuraria (formerly Cyanidium caldarium ): biochemical and immuno- chemical characterization, Biochim. Biophys. Acta - Bioenerg 1320 (1997) 153-164, doi:10.1016/S0005-2728(97)00020-0.

[29]

M. Vítová, F. Goecke, K. Sigler, T. Ř ezanka, Lipidomic analysis of the extremophilic red alga Galdieria sulphuraria in response to changes in pH, Algal. Res. 13 (2016) 218-226, doi:10.1016/j.algal.2015.12.005.

[30]

S.P. Donachie, B.W. Christenson, D.D. Kunkel, A Malahoff, M. Alam, Microbial community in acidic hydrothermal waters of volcanically active White Island, New Zealand, Extremophiles. 6 (2002) 419-425, doi:10.1007/s00792-002-0274-7.

[31]

P.F. Dunfield, A. Yuryev, P. Senin, A.V. Smirnova, M.B. Stott, S. Hou, B. Ly, J.H. Saw, Z. Zhou, Y. Ren, J. Wang, B.W. Mountain, M.A. Crowe, T.M. Weatherby, P.L. Bode-lier, W. Liesack, L. Feng, L. Wang, M. Alam, Methane oxidation by an extremely acidophilic bacterium of the phylum verrucomicrobia, Nature 450 (2007) 879-882, doi:10.1038/nature06411.

[32]

H.J. Op den Camp, S.S. Mohammadi, A. Pol, P.F. Dunfield, Verrucomicrobial methanotrophs, in: M. G. Kalyuzhnaya, X.-H. Xing (Eds.), Methane Biocatalysis:Paving the Way to Sustainability, Springer International Publishing, Cham, 2018, pp. 43-55, doi:10.1007/978-3-319-74866-5_3.

[33]

E. Buckeridge, C.C. Caballero, D.H. Smith, M.B. Stott, C.R. Carere, Substrate and nu- trient manipulation during continuous cultivation of extremophilic algae, Galdieria sp. RTK 37.1, substantially impacts biomass productivity and composition, Biotech- nol. Bioeng 121 (2024) 3428-3439, doi:10.1002/bit.28814.

[34]

C.R. Carere, K. Hards, K.M. Houghton, J.F. Power, B. McDonald, C. Collet, D.J. Gapes, R. Sparling, E.S. Boyd, G.M. Cook, C. Greening, M.B. Stott, Mixotro- phy drives niche expansion of verrucomicrobial methanotrophs, ISME J. 11 (2017)

[35]

C.R. Carere, K. Hards, K. Wigley, L. Carman, K.M. Houghton, G.M. Cook, M.B. Stott, Growth on formic acid is dependent on intracellular pH homeostasis for the ther- moacidophilic methanotroph Methylacidiphilum sp. RTK17.1, Front. Microbiol 12 (2021), doi:10.3389/fmicb.2021.651744.

[36]

C.R. Carere, B. McDonald, H.A. Peach, C. Greening, D.J. Gapes, C. Collet, M.B. Stott, Hydrogen oxidation influences glycogen accumulation in a verrucomi- crobial methanotroph, Front. Microbiol 10 (2019), doi:10.3389/fmicb.2019.01873.

[37]

D.M.H. Smith, Optimisation of Eicosapentaenoic Acid Productivity from a New Zealand Microalga in a Tubular Photobioreactor, University of Canter- bury, Christchurch, New Zealand, 2020 https://libcattest.canterbury.ac.nz/Record/2676983/Permalink.

[38]

S. Taylor, V. Ninjoor, D.M. Dowd, A.L. Tappel, Cathepsin B2 measurement by sen- sitive fluorometric ammonia analysis, Anal. Biochem 60 (1974) 153-162, doi:10.1016/0003-2697(74)90140-7.

[39]

N. Thiex, L. Novotny, A. Crawford, Determination of ash in animal feed: AOAC Of- ficial method 942.05 revisited, J. AOAC Int 95 (2019) 1392-1397, doi:10.5740/jaoacint.12-129.

[40]

M.E. Ebeling, The Dumas method for nitrogen in feeds, J. Assoc. Off. Anal. Chem 51 (2020) 766-770, doi:10.1093/jaoac/51.4.766.

[41]

T.L. Lunder, Simplified procedure for determining fat and total solids by Mojonnier method, JDS 54 (1971) 737-739, doi:10.3168/jds.S0022-0302(71)85917-9.

[42]

AOAC official method 994.12 amino acids in feeds: performic acid oxidation with acid hydrolysis-sodium metabisulfite method, in: G.W. Latimer Jr. (Ed.), Official Methods of Analysis of AOAC INTERNATIONAL, Oxford University Press, 2023, pp. 9-18, doi:10.1093/9780197610145.003.1390.

[43]

M.C. Allred, J.L. Macdonald, Determination of sulfur amino acids and tryptophan in foods and food and feed ingredients: collaborative study, J. Assoc. Off. Anal. Chem 71 (2020) 603-606, doi:10.1093/jaoac/71.3.603.

[44]

B. Zhu, D. Wei, G. Pohnert, The thermoacidophilic red alga Galdieria sulphuraria is a highly efficient cell factory for ammonium recovery from ultrahigh-NH4 + industrial effluent with co-production of high-protein biomass by photo-fermentation, Chem. Eng. J 438 (2022) 135598, doi:10.1016/j.cej.2022.135598.

[45]

K. Badr, W. Whelan, Q.P. He, J. Wang, Fast and easy quantitative characterization of methanotroph-photoautotroph cocultures, Biotechnol. Bioeng (2020) n/a, doi:10.1002/bit.27603.

[46]

K. Badr, Q.P. He, J. Wang, A novel semi-structured kinetic model of methanotroph- photoautotroph cocultures for biogas conversion, Chem. Eng. J 431 (2022) 133461, doi:10.1016/j.cej.2021.133461.

[47]

A. Janes, J. Chaineaux, G. Marlair, D. Carson, W. Benaissa, B. Tribouilloy, Exper- imental study of CH 4 /O2 /CO2 mixtures flammability, AIChE Spring Meeting 2011 & 7. Global Congress on Process Safety (GCPS), AIChE, New York, Chicago, United States, 2011 NC.

[48]

A. Khadem, M.C. van Teeseling, L. van Niftrik, M.S. Jetten, H.J. Op den Camp, A. Pol, Genomic and physiological analysis of carbon storage in the verrucomicrobial methanotroph "Ca. Methylacidiphilum fumariolicum" SolV, Front. Microbiol 3 (2012) 345, doi:10.3389/fmicb.2012.00345.

[49]

M. Martinez-Garcia, M.C. Stuart, M.J. van der Maarel, Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens, Int. J. Biol. Macromol 89 (2016) 12-18, doi:10.1016/j.ijbiomac.2016.04.051.

[50]

M.P. Sinetova, A.G. Markelova, D.A. Los, The effect of nitrogen starvation on the ultrastructure and pigment composition of chloroplasts in the acidothermophilic mi- croalga Galdieria sulphuraria, Russ. J. Plant Physiol 53 (2006) 153-162, doi:10.1134/S1021443706020026.

[51]

S. Hou, K.S. Makarova, J.H. Saw, P. Senin, B.V. Ly, Z. Zhou, Y. Ren, J. Wang, M.Y. Galperin, M.V. Omelchenko, Y.I. Wolf, N. Yutin, E.V. Koonin, M.B. Stott, B.W. Mountain, M.A. Crowe, A.V. Smirnova, A.V. Smirnova, P.F. Dunfield, L. Feng, L. Wang, M. Alam, Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia, Biol. Direct 3 (2008) 26, doi:10.1186/1745-6150-3-26.

[52]

K. Mozaffari, M. Seger, B. Dungan, D.T. Hanson, P.J. Lammers, F.O. Holguin, Alter- ations in photosynthesis and energy reserves in Galdieria sulphuraria during corn stover hydrolysate supplementation, Bioresour. Technol. Rep 7 (2019) 100269, doi: 10.1016/j.biteb.2019.100269.

[53]

B.A. Thomas, T.M. Bricker, A.V. Klotz, Post-translational methylation of phycobili- somes and oxygen evolution efficiency in cyanobacteria, BBA Bioenerg. 1143 (1993) 104-108, doi: 10.1016/0005-2728(93)90222-2.

[54]

B. Khoshnevisan, P. Tsapekos, Y. Zhang, B. Valverde-Pérez, I. Angelidaki, Urban biowaste valorization by coupling anaerobic digestion and single cell protein produc- tion, Bioresour. Technol 290 (2019) 121743, doi: 10.1016/j.biortech.2019.121743.

[55]

F.-M. Kerckhof, M. Sakarika, M. Van Giel, M. Muys, P. Vermeir, J. De Vrieze, S.E. Vlaeminck, K. Rabaey, N. Boon, From biogas and hydrogen to microbial protein through Co-cultivation of methane and hydrogen oxidizing bacteria, Front. Bioeng. Biotechnol 9 (2021), doi: 10.3389/fbioe.2021.733753.

[56]

C.A. Santos, A. Reis, Microalgal symbiosis in biotechnology, Appl. Microbiol. Biotechnol 98 (2014) 5839-5846, doi: 10.1007/s00253- 014- 5764- x.

[57]

A. Elangovan, K.F. Shim, The influence of replacing fish meal partially in the diet with soybean meal on growth and body composition of juvenile tin foil barb (Bar- bodes altus), Aquac. 189 (2000) 133-144 https://doi.org/10.1016/S0044-8486(00)00365-3.

[58]

M. Overland, A.H. Tauson, K. Shearer, A. Skrede, Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals, Arch. Anim. Nutr 64 (2010) 171-189, doi: 10.1080/17450391003691534.

[59]

J.B. García Martínez, J.M. Pearce, J. Throup, J. Cates, M. Lackner, D.C. Denken- berger, Methane single cell protein: potential to secure a global protein supply against catastrophic food shocks, Front. Bioeng. Biotechnol. 10 (2022)-2022, doi: 10.3389/fbioe.2022.906704.

[60]

S. Kadkhodaei, S. Abbasiliasi, T.J. Shun, H.R. Fard Masoumi, M.S. Mohamed, A. Movahedi, R. Rahim, A.B. Ariff, Enhancement of protein production by microal- gae Dunaliella salina under mixotrophic conditions using response surface method- ology, RSC. Adv. 5 (2015) 38141-38151, doi: 10.1039/C5RA04546K.

[61]

R. Barone, L. De Napoli, L. Mayol, M. Paolucci, M.G. Volpe, L. D’Elia, A. Pollio, M. Guida, E. Gambino, F. Carraturo, R. Marra, F. Vinale, S.L. Woo, M. Lorito, Au- totrophic and heterotrophic growth conditions modify biomolecole production in the microalga Galdieria sulphuraria (Cyanidiophyceae, Rhodophyta), Mar. Drugs 18 (2020), doi:10.3390/md18030169.

[62]

I.N. Stadnichuk, M.G. Rakhimberdieva, Y.V. Bolychevtseva, N.P. Yurina, N.V. Kara- petyan, I.O. Selyakh, Inhibition by glucose of chlorophyll a and phycocyanobilin biosynthesis in the unicellular red alga Galdieria partita at the stage of co- proporphyrinogen III formation, Plant Sci. 136 (1998) 11-23, doi:10.1016/S0168-9452(98)00088-0.

[63]

G. Salbitani, S. Carfagna, Different behaviour between autotrophic and heterotrophic Galdieria sulphuraria (Rhodophyta) cells to nitrogen starvation and restoration. Impact on pigment and free amino acid contents, Int. J. Plant Biol 11 (2020), doi: 10.4081/pb.2020.8567.

[64]

Protein and amino acid requirements in human nutrition, WHO Tech. Rep. Ser (2007) 1-265

[65]

A.P. Batista, L. Gouveia, N.M. Bandarra, J.M. Franco, A. Raymundo, Comparison of microalgal biomass profiles as novel functional ingredient for food products, Algal. Res. 2 (2013) 164-173, doi: 10.1016/j.algal.2013.01.004.

[66]

D.W. Templeton, L.M.L. Laurens, Nitrogen-to-protein conversion factors revisited for applications of microalgal biomass conversion to food, feed and fuel, Algal. Res. 11 (2015) 359-367, doi: 10.1016/j.algal.2015.07.013.

[67]

M.D. Erdman, W.G. Bergen, C.A. Reddy, Amino acid profiles and presumptive nutri- tional assessment of single-cell protein from certain lactobacilli, Appl. Env. Microbiol 33 (1977) 901-905, doi: 10.1128/aem.33.4.901-905.1977.

[68]

A. Skrede, G.M. Berge, T. Storebakken, O. Herstad, K.G. Aarstad, F. Sundstøl, Digestibility of bacterial protein grown on natural gas in mink, pigs, chicken and Atlantic salmon, Anim. Feed Sci. Technol 76 (1998) 103-116, doi: 10.1016/S0377-8401(98)00208-9.

[69]

S.H.M. Gorissen, J.J.R. Crombag, J.M.G. Senden, W.A.H. Waterval, J. Bierau, L.B. Verdijk, L.J.C. van Loon, Protein content and amino acid composition of com- mercially available plant-based protein isolates, Amino Acids. 50 (2018) 1685-1695, doi: 10.1007/s00726-018-2640-5.

[70]

S.S. Roy, R. Pal, Microalgae in Aquaculture: a review with special references to nutritional value and fish dietetics, Proc. Zool. Soc. 68 (2015) 1-8, doi: 10.1007/s12595-013-0089-9.

[71]

A. Nyyssölä, A. Suhonen, A. Ritala, K.-M. Oksman-Caldentey, The role of single cell protein in cellular agriculture, Curr. Opin. Biotechnol. 75 (2022) 102686, doi: 10. 1016/j.copbio.2022.102686.

[72]

B. Valverde-Pérez, W. Xing, A.A. Zachariae, M.M. Skadborg, A.F. Kjeldgaard, A. Palomo, B.F. Smets, Cultivation of methanotrophic bacteria in a novel bubble- free membrane bioreactor for microbial protein production, Bioresour. Technol. 310 (2020) 123388, doi: 10.1016/j.biortech.2020.123388.

[73]

X. Zha, P. Tsapekos, X. Zhu, B. Khoshnevisan, X. Lu, I. Angelidaki, Bioconversion of wastewater to single cell protein by methanotrophic bacteria, Bioresour. Technol. 320 (2021) 124351, doi: 10.1016/j.biortech.2020.124351.

[74]

X. Li, Y. Lu, N. Li, Y. Wang, R. Yu, G. Zhu, R.J. Zeng, Mixotrophic cultivation of microalgae using biogas as the substrate, Env. Sci. Technol. 56 (2022) 3669-3677, doi: 10.1021/acs.est.1c06831.

[75]

P. Ruiz-Ruiz, T.L. Gómez-Borraz, S. Revah, M. Morales, Methanotroph-microalgae co-culture for greenhouse gas mitigation: effect of initial biomass ratio and methane concentration, Chemosphere 259 (2020) 127418, doi: 10.1016/j.chemosphere.2020. 127418.

[76]

G. Padmaperuma, R.V. Kapoore, D.J. Gilmour, S. Vaidyanathan, Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing, Crit. Rev. Biotechnol. 38 (2018) 690-703, doi: 10.1080/07388551.2017.1390728.

[77]

K.D. Wendlandt, W. Geyer, G. Mirschel, F.A.-H. Hemidi, Possibilities for controlling a PHB accumulation process using various analytical methods, J. Biotechnol. 117 (2005) 119-129, doi: 10.1016/j.jbiotec.2005.01.007.

[78]

A.K. Ahangar, P. Yaqoubnejad, K. Divsalar, S. Mousavi, M. Taghavijeloudar, De- sign a novel internally illuminated mirror photobioreactor to improve microalgae production through homogeneous light distribution, Bioresour. Technol 387 (2023) 129577, doi: 10.1016/j.biortech.2023.129577.

[79]

A. Salma, R. Abdallah, F. Fourcade, A. Amrane, H. Djelal, A new approach to produce succinic acid through a Co-culture system, Appl. Biochem. Biotechnol 193 (2021) 2872-2892, doi: 10.1007/s12010- 021- 03572-2.

AI Summary AI Mindmap
PDF (2454KB)

281

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/