Production of cycloastragenol in metabolically engineered yeast

Jingxian Zhang , Peng Xu , Yongjun Wei

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (3) : 100227

PDF (2255KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (3) : 100227 DOI: 10.1016/j.engmic.2025.100227
Short Communication
research-article

Production of cycloastragenol in metabolically engineered yeast

Author information +
History +
PDF (2255KB)

Abstract

Cycloastragenol is a bioactive, high-value triterpenoid derived from Astragalus membranaceus. Conventional plant-based extraction and chemical synthesis methods are expensive. To our knowledge, this is the first report on the de novo biosynthesis of cycloastragenol in yeast. The mevalonate pathway was reconstituted in yeast peroxisomes, and the engineered yeast produced 656.55 mg/L squalene. Further introduction of heterologous enzymes led the engineered yeast to produce 1.04 mg/L cycloastragenol, which demonstrated the yeast production of value-added medicinal molecules.

Keywords

Saccharomyces cerevisiae / Cycloastragenol / Mevalonate pathway / Synthetic biology / Metabolic engineering

Cite this article

Download citation ▾
Jingxian Zhang, Peng Xu, Yongjun Wei. Production of cycloastragenol in metabolically engineered yeast. Engineering Microbiology, 2025, 5(3): 100227 DOI:10.1016/j.engmic.2025.100227

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

All data generated or analyzed during this study are included in this published article and its supplementary information files or are available upon request.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Jingxian Zhang: Writing - original draft, Visualization, Data curation. Peng Xu: Writing - review & editing. Yongjun Wei: Writing - review & editing, Funding acquisition, Conceptualization.

Acknowledgements

This study was supported by the Program for Scientific and Technological Innovation Talents in Universities of Henan Provincial Education Department (25HASTIT057), the Henan Province Outstanding Youth Foundation (242300421097), and National Natural Science Foundation of China (32371485 and 32111530179).

References

[1]

M. He, K. Wang, H. Che, H. Wang, K. Yang, G. Zhang, J. Yao, J. Wang, A com- prehensive review of cycloastragenol: biological activity, mechanism of action and structural modifications, Eur. J. Med. Chem. Rep. 5 (2022) 100060.

[2]

P. Nartop, A. Gurel, I.H. Akgun, E. Bedir, Astragaloside IV and cycloastragenol pro- duction capacity of Astragalus trojanus calli, Rec. Nat. Prod. 9 (2015) 49-61.

[3]

L. Cheng, H. Zhang, H. Cui, W. Wang, Q. Yuan, Efficient production of the anti-ag- ing drug cycloastragenol: insight from two glycosidases by enzyme mining, Appl. Microbiol. Biotechnol. 104 (2020) 9991-10004.

[4]

H. Kwon, Y. Park, Determination of astragalin and astragaloside content in Radix Astragali using high-performance liquid chromatography coupled with pulsed am- perometric detection, J. Chromatogr. A 1232 (2012) 212-217.

[5]

W. Niu, J. Zhang, L. Qu, X. Ji, Y. Wei, Advances in synthesizing plant-derived isoflavones and their precursors with multiple pharmacological activities using en- gineered yeasts, Microb. Cell Fact. 24 (2025) 75.

[6]

C. Lu, R. Du, H. Fu, J. Zhang, M. Zhao, Y. Wei, W. Lin, Heterologous biosynthesis of medicarpin using engineered Saccharomyces cerevisiae, Synth. Syst. Biotechnol. 8 (2023) 749-756.

[7]

Y. Wei, B. Ji, V. Siewers, D. Xu, B.A. Halkier, J. Nielsen, Identification of genes involved in shea butter biosynthesis from Vitellaria paradoxa fruits through tran- scriptomics and functional heterologous expression, Appl. Microbiol. Biotechnol. 103 (2019) 3727-3736.

[8]

Y. Wei, D. Bergenholm, M. Gossing, V. Siewers, J. Nielsen, Expression of cocoa genes in Saccharomyces cerevisiae improves cocoa butter production, Microb. Cell Fact. 17 (2018) 11.

[9]

Y. Wei, Yeast synthetic biology for the production of terpenoids derived from tra- ditional Chinese medicinal plants, in: F. Darvishi Harzevili (Ed.), Synthetic Biology of Yeasts: Tools and Applications, Springer International Publishing, Cham, 2022, pp. 181-205.

[10]

Y. Ma, Y. Shang, G. Stephanopoulos, Engineering peroxisomal biosynthetic pathways for maximization of triterpene production in Yarrowia lipolytica, Proc. Natl. Acad. Sci. USA 121 (2024) e2314798121.

[11]

S. Song, C. Ye, Y. Jin, H. Dai, J. Hu, J. Lian, R. Pan, Peroxisome-based metabolic engineering for biomanufacturing and agriculture, Trends Biotechnol. 42 (2024) 1161-1176.

[12]

T. Han, A. Nazarbekov, X. Zou, S.Y. Lee, Recent advances in systems metabolic en- gineering, Curr. Opin. Biotechnol. 84 (2023) 103004.

[13]

X. Meng, H. Liu, W. Xu, W. Zhang, Z. Wang, W. Liu, Metabolic engineering Sac- charomyces cerevisiae for de novo production of the sesquiterpenoid ( + )-nootkatone, Microb. Cell Fact. 19 (2020) 21.

[14]

S. Shimazaki, R. Yamada, Y. Yamamoto, T. Matsumoto, H. Ogino, Building a ma- chine-learning model to predict optimal mevalonate pathway gene expression levels for efficient production of a carotenoid in yeast, Biotechnol. J. 19 (2024) e2300285.

[15]

M. Du, G. Zhang, Z. Zhu, Y. Zhao, B. Gao, X. Tao, F. Wang, D. Wei, Boosting the epox- idation of squalene to produce triterpenoids in Saccharomyces cerevisiae, Biotechnol. Biofuels Bioprod. 16 (2023) 76.

[16]

Y. Duan, W. Du, Z. Song, R. Chen, K. Xie, J. Liu, D. Chen, J. Dai, Functional character- ization of a cycloartenol synthase and four glycosyltransferases in the biosynthesis of cycloastragenol-type astragalosides from Astragalus membranaceus, Acta Pharm. Sin. B 13 (2023) 271-283.

[17]

W. Shi, J. Li, Y. Chen, X. Liu, Y. Chen, X. Guo, D. Xiao, Metabolic engineering of Saccharomyces cerevisiae for ethyl acetate biosynthesis, ACS Synth. Biol. 10 (2021) 495-504.

[18]

Q. Zhang, W. Zeng, S. Xu, J. Zhou, Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae, Bioresour. Technol. 342 (2021) 125978.

[19]

M.J. Volk, V.G. Tran, S.I. Tan, S. Mishra, Z. Fatma, A. Boob, H. Li, P. Xue, T.A. Martin, H. Zhao, Metabolic engineering: methodologies and applications, Chem. Rev. 123 (2023) 5521-5570.

[20]

H. Seki, K. Tamura, T. Muranaka, P450s and UGTs: key players in the structural diversity of triterpenoid saponins, Plant Cell Physiol. 56 (2015) 1463-1471.

[21]

B. Xu, J. Huang, G. Peng, W. Cao, Z. Liu, Y. Chen, J. Yao, Y. Wang, J. Li, G. Zhang, S. Chen, S. Huang, Total biosynthesis of the medicinal triterpenoid saponin astraga- losides, Nat. Plants 10 (2024) 1826-1837.

[22]

J. Xiang, M. Liu, X. Wang, M. Yue, Z. Qin, J. Zhou, Combined metabolic and en- zymatic engineering for de novo biosynthesis of 𝛿-tocotrienol in Yarrowia lipolytica, Synth. Syst. Biotechnol. 10 (2025) 719-727.

[23]

M. Sellner, A. Fischer, C.G. Don, M. Smieš ko, Conformational landscape of cy- tochrome P450 reductase interactions, Int. J. Mol. Sci. 22 (2021).

[24]

J. Liu, Y. Li, X. Xu, Y. Wu, Y. Liu, J. Li, G. Du, J. Chen, X. Lv, L. Liu, Multi- plexed engineering of cytochrome P450 enzymes for promoting terpenoid synthe- sis in S accharomyces cerevisiae cell factories: a review, Biotechnol. Adv. 81 (2025) 108560.

[25]

X. Wang, X. Zhang, J. Zhang, Y. Zhou, F. Wang, Z. Wang, X. Li, Advances in mi- crobial production of geraniol: from metabolic engineering to potential industrial applications, Crit. Rev. Biotechnol. 45 (2025) 727-742.

[26]

B.D. Kwan, B. Seligmann, T.D. Nguyen, J. Franke, T.T. Dang, Leveraging synthetic biology and metabolic engineering to overcome obstacles in plant pathway elucida- tion, Curr. Opin. Plant Biol. 71 (2023) 102330.

[27]

R. Guan, M. Wang, Z. Guan, C.Y. Jin, W. Lin, X. Ji, Y. Wei, Metabolic engineering for glycyrrhetinic acid production in Saccharomyces cerevisiae, Front. Bioeng. Biotech- nol. 8 (2020) 588255.

[28]

S. Dinday, S. Ghosh, Recent advances in triterpenoid pathway elucidation and engi- neering, Biotechnol. Adv. 68 (2023) 108214.

[29]

Q. Ding, C. Ye, Microbial cell factories based on filamentous bacteria, yeasts, and fungi, Microb. Cell Fact. 22 (2023) 20.

[30]

M.L. Sun, X. Gao, L. Lin, J. Yang, R. Ledesma-Amaro, X.J. Ji, Building Yarrowia lipolytica cell factories for advanced biomanufacturing: challenges and solutions, J. Agric. Food Chem. 72 (2024) 94-107.

[31]

H. Zhang, L. Guo, Y. Su, R. Wang, W. Yang, W. Mu, L. Xuan, L. Huang, J. Wang, W. Gao, Hosts engineering and in vitro enzymatic synthesis for the discovery of novel natural products and their derivatives, Crit. Rev. Biotechnol. 44 (2024) 1121-1139.

[32]

F. Zhang, X. Hao, J. Liu, H. Hou, S. Chen, C. Wang, Herbal multiomics provide insights into gene discovery and bioproduction of triterpenoids by engineered mi- crobes, J. Agric. Food Chem. 73 (2025) 47-65.

[33]

Q. Guo, Q. Peng, Y. Li, F. Yan, Y. Wang, C. Ye, T. Shi, Advances in the metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica for the production of 𝛽-carotene, Crit. Rev. Biotechnol. 44 (2024) 337-351.

AI Summary AI Mindmap
PDF (2255KB)

225

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/